Efficient algorithms for travelling salesman problems arising in warehouse order picking

Hadi Charkhgard, Martin Savelsbergh

Abstract


We investigate two routing problems that arise when order pickers traverse an aisle in a warehouse. The routing problems can be viewed as Euclidean travelling salesman problems with points on two parallel lines. We show that if the order picker traverses only a section of the aisle and then returns, then an optimal solution can be found in linear time, and if the order picker traverses the entire aisle, then an optimal solution can be found in quadratic time. Moreover, we show how to approximate the routing cost in linear time by computing a minimum spanning tree for the points on the parallel lines.

doi:10.1017/S1446181115000140

Keywords


order batching; order picking; picker routing; travelling salesman problem; minimum spanning tree problem



DOI: http://dx.doi.org/10.21914/anziamj.v57i0.7666



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.