Characterizations of the transmuted inverse Weibull distribution
DOI:
https://doi.org/10.21914/anziamj.v55i0.7785Keywords:
Reliability functions, moment estimation, order statistics, maximum likelihood estimationAbstract
We characterise the transmuted inverse Weibull distribution and compare it to many other generalizations of the two-parameter inverse Weibull distribution using the likelihood ratio test. Explicit expressions are derived for the quantile, moment generating function, entropies, mean deviation and order statistics. A bladder cancer application is presented to illustrate the proposed transmuted inverse Weibull distribution. References- Arnold, B. C., Balakrishnan A. N. and Nagaraja H. N., A first course in order statistics, Wiley, New York, 1992. doi:10.1002/9781118150412
- Aryal, G. R. and Tsokos, C. P., Transmuted Weibull distribution: A generalization of the Weibull Probability distribution. Europe. J. of Pure Appl. Math., 4(2):89–102, 2011. http://www.ejpam.com/index.php/ejpam/article/view/1170
- Calabria, R. and Pulcini, G., On the maximum likelihood and least-squares estimation in the inverse Weibull distribution. Stat. Appl., 2:53–66, 1990. http://sa-ijas.stat.unipd.it/sites/sa-ijas.stat.unipd.it/files/53-66.pdf
- de Gusmao, F. R. S., Ortega, E. M. M. and Cordeiro, G. M., The generalized inverse Weibull distribution. Stat. Pap., 52:591–619, 2011. doi:10.1007/s00362-009-0271-3
- Cordeiro, G. M., Gomes, A. E., da-Silva, C. Q. and Ortega, E. M. M., The beta exponentiated Weibull distribution. J. Stat. Comput. Sim., 83(1):114–138, 2013. doi:10.1080/00949655.2011.615838
- Havrda, J. and Charvat, F., Quantification method in classification processes: concept of structural \(\alpha \)-entropy. Kybernetika, 3:30–35, 1967. http://www.kybernetika.cz/content/1967/1/30
- Khan, M. S. and King, R., Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution. Europe. J. of Pure Appl. Math., 6(1):66–88, 2013. http://www.ejpam.com/index.php/ejpam/article/view/1606
- Khan, M. S. and King, R., Transmuted generalized inverse Weibull distribution. J. Appl. Stat. Sci., 20(3):15–32, 2013. https://www.novapublishers.com/catalog/product_info.php?products_id=47370
- Keller, A. Z., Kamath A. R. R. and Perera, U. D., Reliability analysis of CNC machine tools. Reliab. Eng., 3:449–473, 1982. doi:10.1016/0143-8174(82)90036-1
- Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc., 53(282):457–481, 1958. doi:10.1080/01621459.1958.10501452
- Lee, E. T. and Wang, J. W., Statistical Methods for Survival Data Analysis. Wiley, New York, 2003. doi:10.1002/0471458546
- Liu, C.-C., A Comparison between the Weibull and Lognormal Models used to Analyze Reliability Data. PhD Thesis University of Nottingham, 1997.
- Renyi, A., On measures of information and entropy. Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. 1:547–561, 1961. http://projecteuclid.org/euclid.bsmsp/1200512181
- The R Project for Statistical Computing, Vienna, Austria, 2014. http://www.R-project.org
- Shaw, W. T. and Buckley, I. R. C., The alchemy of probability distributions: beyond Gram–Charlier expansions, and a skew-kurtotic normal distribution from a rank transmutation map. Technical report, 2009. http://arxiv.org/abs/0901.0434
Published
2014-07-10
Issue
Section
Proceedings Engineering Mathematics and Applications Conference