Estimation of inhaled ultrafine particle surface area dose for urban environments
DOI:
https://doi.org/10.21914/anziamj.v55i0.7819Abstract
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung. References- I. Albert and J.-B. Denis. Dirichlet and multinomial distributions: properties and uses in JAGS. Unite Mathematiques et Informatique Appliquees, INRA, Technical Report 2012–5, 2012. http://w3.jouy.inra.fr/unites/miaj/public/nosdoc/rap2012-5.pdf.
- A. V. Broich, L. E. Gerharz, and O. Klemm. Personal monitoring of exposure to particulate matter with a high temporal resolution. Environ. Sci. Pollut. R., 19:2959–2972, 2012. doi:10.1007/s11356-012-0806-3.
- G. Buonanno, G. Giovinco, L. Morawska, and L. Stabile. Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. Atmos. Environ., 45(34):6216–6224, 2011. doi:10.1016/j.atmosenv.2011.07.066.
- G. Buonanno, L. Morawska, L. Stabile, L. Wang, and G. Giovinco. A comparison of submicrometer particle dose between Australian and Italian people. Environ. Pollut., 169:183–189, 2012. doi:10.1016/j.envpol.2012.03.002.
- HEI Review Panel on Ultrafine Particles. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Perspectives 3, Technical Report, 2013. http://pubs.healtheffects.org/getfile.php?u=893.
- ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Ann. ICRP 24(1–3), 1994. http://www.icrp.org/publication.asp?id=ICRP%20Publication%2066.
- B. Y. H. Liu, K. T. Whitby, and D. Y. H. Pui. A portable electrical analyzer for size distribution measurement of submicron aerosols. J. Air Pollut. Control Assoc., 24(11):1067–1072, 1974. doi:10.1080/00022470.1974.10470016.
- J. Marra, M. Voetz, and H.-J. Kiesling. Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res., 12(1):21–37, 2010. doi:10.1007/s11051-009-9695-x.
- M. Mazaheri, S. Clifford, R. Jayaratne, M. A. Megat Mokhtar, F. Fuoco, G. Buonanno, and L. Morawska. School children's personal exposure to ultrafine particles in the urban environment. Envir. Sci. Tech., 48(1):113–120, 2014. doi:10.1021/es403721w.
- L. Morawska, S. Thomas, N. Bofinger, D. Wainwright, and D. Neale. Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants. Atmos. Environ., 32:2467–2478, 1998. doi:10.1016/S1352-2310(98)00023-5.
- G. Oberdorster. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health, 74(1):1–8, 2001. http://www.ncbi.nlm.nih.gov/pubmed/11196075.
- M. Plummer. RJAGS: Bayesian graphical models using MCMC, R package version 3-9. 2012. http://cran.r-project.org/web/packages/rjags/index.html.
Published
2014-11-05
Issue
Section
Proceedings Engineering Mathematics and Applications Conference