Cost optimization of a software reliability growth model with imperfect debugging and a fault reduction factor

Taduru Manjula, Madhu Jain, T.R. Gulati

Abstract


In modern society people depend on both hardware and software systems. A software system is embedded in every activity of a computer system. The desired performance of a software system is an important issue for many critical systems. Over the past decades, many software models were proposed for estimating the growth of reliability. To improve software quality, software reliability growth models (SRGM) play an important role. The present investigation deals with a SRGM with imperfect debugging, change points and a fault reduction factor (FRF). A FRF is the net number of faults removed in proportion to the failures experienced. This article proposes a new scheme for constructing a SRGM based on a non-homogeneous Poisson process by considering a constant FRF. The main focus is to provide an efficient parametric decomposition for a SRGM. Numerical examples are given to illustrate the validity of analytical results.

References
  • Ahmad, N., Khan, M. G. M. and Rafi, L. S. Analysis of an inflection S-shaped software reliability model considering log-logistic testing-effort and imperfect debugging, Int. J. Comput. Sci. Net. Sec., 11(1)161–171, 2011. http://paper.ijcsns.org/07_book/201101/20110125.pdf.
  • Chang, Y.-C. and Liu, C. A generalized JM model with applications to imperfect debugging in software reliability, Appl. Math. Model., 33(9)3578–3588, 2009. doi:10.1016/j.apm.2008.11.018.
  • Goel, A. L. and Okumoto, K. Time-dependent error-detection rate model for software reliability and other performance measures, IEEE T. Reliab., 28(3):206–211, 1979. doi:10.1109/TR.1979.5220566.
  • Hsu, C.-J., Huang, C.-Y. and Chang, J.-R. Enhancing software reliability modelling and prediction through the introduction of time-variable fault reduction factor, Appl. Math. Model., 35(1):506–521, 2011. doi:10.1016/j.apm.2010.07.017.
  • Jha, P. C., Gupta, D., Yang, B. and Kapur, P. K. Optimal testing resource allocation during module testing considering cost, testing effort and reliability, Comput. Int. Eng., 57(3):1122–1130, 2009. doi:10.1016/j.cie.2009.05.001.
  • Kapur, P. K., Kumar, A., Yadav, K. and Khatri, S. K. Software reliability growth modelling for errors of different severity using change point, Int. J. Qual., Reliab., Safe. Eng., 14(4):311–326, 2007. doi:10.1142/S0218539307002672.
  • Lyu, M. R. Handbook of Software Reliability Engineering, McGraw-Hill, New York, 1996.
  • Lyu, M. R. and Nikora, A. Applying reliability models more effectively (software), IEEE Software, 9(4):43–52, 1992. doi:10.1109/52.143104.
  • Musa, J. D. A theory of software reliability and its application, IEEE T. Software Eng., 3(1):312–327, 1975. doi:10.1109/TSE.1975.6312856.
  • Musa, J. D. The measurement and management of software reliability, P. IEEE, 68(9):1131–1143, 1980. doi:10.1109/PROC.1980.11812.
  • Musa, J. D., Lamino, A. and Okumoto, K. Software reliability: Measurement, Prediction, Application, McGraw-Hill, New York, 1987.
  • Okumoto, K. and Goel, A. L. Optimum release time for software system based on reliability and cost criteria, J. Syst. Software, 1:315–318, 1980. doi:10.1016/0164-1212(79)90033-5.
  • Pham, H. Software Reliability, Springer-Verlag, Singapore, 2000.
  • Pham, H. A software cost model with imperfect debugging, Random life cycle and penalty cost, Int. J. Syst. Sci., 27(5):455–463, 1996. doi:10.1080/00207729608929237.
  • Quadri, S. M. K. and Ahmad, N. Software reliability growth modelling with new modified Weibull testing- effort and optimal release policy, Int. J. Comput. Appl., 6(12), 2010. doi:10.5120/1127-1477.
  • Quadri, S. M. K., Ahmad, N. and Farooq, S. U. Software reliability growth modelling with generalized exponential testing-effort and optimal software release policy, Global J. Comput. Sci. Tech., 11(2):27–42, 2011. http://computerresearch.org/stpr/index.php/gjcst/article/view/605.
  • Shyur, H.-J. A stochastic software reliability model with imperfect debugging and change-point, J. Syst. Software, 66(2):135–141, 2003. doi:10.1016/S0164-1212(02)00071-7.
  • Xie, M. Software Reliability Modelling, World Scientist, Singapore, 1991.
  • Xie, M. and Yang, B. A study of the effect of imperfect debugging on software development cost model, IEEE T. Software Eng., 29(5):471–473, 2003. doi:10.1109/TSE.2003.1199075.
  • Li, X., Xie. M. and Szu H. N. Sensitivity analysis of release time of software reliability models incorporating testing effort with multiple change-points, Appl. Math. Model., 34(11):3560–3570, 2010. doi:10.1016/j.apm.2010.03.006.
  • Zhao, J., Liu, H.-W., Cui, G. and Yang, X.-Z. Software reliability growth model with change-point and environmental function, J. Syst. Software, 79(11):1578–1587, 2006. doi:10.1016/j.jss.2006.02.030.

Keywords


Software reliability, Non-homogeneous Poisson process, Imperfect debugging, Testing effort function, Fault reduction factor, change point, Optimal release policy.

Full Text:

PDF BIB


DOI: http://dx.doi.org/10.21914/anziamj.v55i0.7834



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.