A numerical investigation of the time distributed-order diffusion model

Authors

  • Xiuling Hu Jiangsu Normal University
  • Fawang Liu Queensland University of Technology
  • Vo Anh Queensland University of Technology
  • Ian Turner Queensland University of Technology

DOI:

https://doi.org/10.21914/anziamj.v55i0.7888

Keywords:

time distributed-order diffusion model, multi-term fractional model, implicit numerical method, Stability and convergence

Abstract

Distributed-order differential models are more powerful tools to describe complex dynamical systems than the classical and fractional-order models because of their nonlocal properties. A time distributed-order diffusion model is investigated. By employing some numerical integration techniques, we approximate the distributed-order fractional model with a multi-term fractional model, which is then solved by an implicit numerical method. The stability and convergence of the numerical method is analyzed. Some numerical results are presented to demonstrate the effectiveness of the method and to exhibit the solution behavior of three different diffusion models. References
  • I. M. Sokolov, A. V. Chechkin and J. Klafter, Distributed-order fractional kinetics, Acta Phys. Pol. B, 35:1323–1341, 2004. http://www.actaphys.uj.edu.pl/_cur/store/vol35/pdf/v35p1323.pdf.
  • F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191:12–20, 2007. doi:10.1016/j.amc.2006.08.162.
  • R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339:1–77, 2000. doi:10.1016/S0370-1573(00)00070-3.
  • A. V. Chechkin, R. Gorenflo and I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66:046129, 2002. doi:10.1103/PhysRevE.66.046129.
  • M. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379:216–228, 2011. doi:10.1016/j.jmaa.2010.12.056.
  • C. F. Lorenz and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dynam., 29:57–98, 2002. http://link.springer.com/article/10.1023/A:1016586905654.
  • M. Caputo, Mean fractional-order-derivatives differential equations and filters. Ann. Univ. Ferrara, 41:73–84, 1995. http://link.springer.com/article/10.1007%2FBF02826009.
  • K. Diethelm and N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comp. Appl. Math., 225:96–104, 2009. doi:10.1016/j.cam.2008.07.018.
  • H. Ye, F. Liu, V. Anh and I. Turner, Maximum principle and numerical method for the multi-term time-space Riesz–Caputo fractional differential equations, Appl. Math. Comput., 227:531–540, 2014. doi:10.1016/j.amc.2013.11.015.
  • F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang and Q. Liu, Numerical methods for solving the multi-term time-fractional wave-equation, Fract. Calc. Appl. Anal., 16:9–25, 2013. doi:10.2478/s13540-013-0002-2.
  • Z.-Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56:193–209, 2006. doi:10.1016/j.apnum.2005.03.003.

Author Biographies

Xiuling Hu, Jiangsu Normal University

School of Mathematics and Statistics

Fawang Liu, Queensland University of Technology

Professor Fawang Liu School of Mathematical Sciences Gardents Point Campus P Block, L878 Email: f.liu@qut.edu.au Phone: 61 7 3138 1329 QQ: 2682942006 Research Areas Numerical simulation of complex dynamical system and applications in different areas of mathematical physical, , computational biology, medicine, geological engineering, chemical processing and signal processing. Numerical methods and analysis of fractional differential equations.

Vo Anh, Queensland University of Technology

School of Mathematical Sciences

Ian Turner, Queensland University of Technology

School of Mathematical Sciences

Published

2014-11-17

Issue

Section

Proceedings Engineering Mathematics and Applications Conference