Modified empirical fitting of the discharge behavior of LiFePO\(_4\) batteries under various conditions

Shin-Yi Lee, Wei-Li Chiu, Yi-Shuo Liao, Kung-Yen Lee, Jau-Horng Chen, Huei-Jeng Lin, Kang Li


A mathematical model is developed by fitting the discharge curve of a new LiFePO\(_4\) battery and then used to investigate the relationship between the discharge time and the closed-circuit voltage. This model consists of exponential and polynomial terms where the exponential term dominates the discharge time of a battery and the polynomial term dominates the change in the closed-circuit voltage. Time shift and time scale processes modify the exponential and polynomial terms, respectively, so that the model is suitable for batteries under various conditions.

  • W. Su, H. Eichi, W. Zeng and M.-Y. Chow, A survey on the electrification of transportation in a smart grid environment, IEEE Intl. Conf. Ind. I. 8:1–10, 2012. doi:10.1109/TII.2011.2172454
  • J. Wang, Z. Sun and X. Wei, Performance and characteristic research in LiFePO\(_4\) battery for electric vehicle applications, IEEE Vehicle Power 1657–1661, 2009. doi:10.1109/VPPC.2009.5289664
  • A. Shafiei, A. Momeni and S. S. Williamson, Battery modeling approaches and management techniques for plug-in hybrid electric vehicles, IEEE Vehicle Power 1–5, 2011. doi:10.1109/VPPC.2011.6043191
  • P. Bai, D. A. Cogswell and M. Z. Bazant, Suppression of phase separation in LiFePO\(_4\) nanoparticles during battery discharge, Nano Lett. 11:4890–4896, 2011. doi:10.1021/nl202764f
  • H. L. Chan and D. Sutanto, A new battery model for use with battery energy storage systems and electric vehicle power systems, IEEE Power Eng. Soc. 1:470–475, 2000. doi:10.1109/PESW.2000.850009
  • T. Kim and W. Qiao, A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects, IEEE T. Energy Conver. 26:1172–1180, 2011. doi:10.1109/TEC.2011.2167014
  • D. N. Rakhmatov and S. B. K. Vrudhula, An analytical high-level battery model for use in energy management of portable electronic systems, IEEE ICCAD 488–493, 2001. doi:10.1109/ICCAD.2001.968687
  • V. Srinivasan and J. Newman, Discharge model for the lithium iron-phosphate electrode, J. Electrochem. Soc. 151:A1517–A1529, 2004. doi:10.1149/1.1785012
  • V. Rao, G. Singhal, A. Kumar and N. Navet, Battery model for embedded systems, VLSI Des. 105–110, 2005. doi:10.1109/ICVD.2005.61
  • S. Dargavillez and T. W. Farrell, Predicting active material utilization in LiFePO\(_4\) electrodes using a multiscale mathematical model, J. Electrochem. Soc. 157:A830–A840, 2010. doi:10.1149/1.3425620
  • R. Rao, S. Vrudhula and D. N. Rakhmatov, Battery modeling for energy-aware system design, Computer 36:77–87, 2003. doi:10.1109/MC.2003.1250886
  • M. Chen and G. A. Rincon-Mora, Accurate electrical battery model capable of predicting runtime and i-v performance, IEEE T. Energy Conver. 21:504–511, 2006. doi:10.1109/TEC.2006.874229
  • L. Gao, S. Liu and R. A. Dougal, Dynamic lithium-ion battery model for system simulation, IEEE T. Compon. Pack. T. 25:495–505, 2002. doi:10.1109/TCAPT.2002.803653
  • V. Agarwal, K. Uthaichana, R. A. DeCarlo and L. H. Tsoukalas, Development and validation of a battery model useful for discharging and charging power control and lifetime estimation, IEEE T. Energy Conver. 25:821–835, 2010. doi:10.1109/TEC.2010.2043106
  • B. Schweighofer, K. M. Raab and G. Brasseur, Modeling of high power automotive batteries by the use of an automated test system, IEEE T. Instrum. Meas. 52:1087–1091, 2003. doi:10.1109/TIM.2003.814827

Full Text:



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.