Removing a mixture of Gaussian and impulsive noise using the total variation functional and split Bregman iterative method

Bishnu Prasad Lamichhane

Abstract


We apply the split Bregman iterative method to minimise the total variation of a piecewise polynomial function to remove Gaussian and impulsive noise from an image. We compare these numerical results with another approach based on the gradient penalty. Both approaches use a finite element method. Numerical results show that the method based on the total variation functional is superior only for one class of images.

References
  • Plataniotis, K. N. and Venetsanopoulos, A. N. Color Image Processing and Applications. Springer, 2000. doi:10.1007/978-3-662-04186-4
  • Chan, T. F. and Shen, J. Image Processing And Analysis: Variational, PDE, Wavelet, And Stochastic Methods. SIAM, 2005. doi:10.1137/1.9780898717877
  • Blanchet, G. and Charbit, M. Digital Signal and Image Processing using Matlab. Wiley, 2010. doi:10.1002/9780470612385.
  • Preusser, T. and Rumpf, M. An adaptive finite element method for large scale image processing. J. Vis. Commun. Image R. 11:183–195 2000. doi:10.1006/jvci.1999.0444
  • Ferrant, M., Warfield, S. K., Nabavi, A., Jolesz, F. A. and Kikinis, R. Registration of 3D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE T. Med. Imaging 20:1384–1397, 2001. doi:10.1007/978-3-540-40899-4_3
  • Besdok, E. Impulsive noise suppression from images by using Anfis interpolant and Lillietest. EURASIP J. Appl. Sig. P. 2004:526574, 2004. doi:10.1155/S1110865704403126
  • Wang, Z., Qi, F. and Zhou, F. A discontinuous finite element method for image denoising. In Image Analysis and Recognition vol. 4141 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2006. doi:10.1007/11867586_11
  • Demaret, L. and Iske, A. Adaptive image approximation by linear splines over locally optimal Delaunay triangulations. IEEE Signal Proc. Lett. 13:281–284, 2006. doi:10.1109/LSP.2006.870358
  • Aizenberg, I. and Butakoff, C. Effective impulse detector based on rank-order criteria. IEEE Signal Proc. Lett. 11:363–366, 2004. doi:10.1109/LSP.2003.822925.
  • Garnett, R., Huegerich, T., Chui, C. and He, W. A universal noise removal algorithm with an impulse detector. IEEE T. Image Process. 14:1747–1754, 2005. doi:10.1109/TIP.2005.857261
  • Donoho, D. L. De-noising by soft-thresholding. IEEE T. Inform. Theory 41:613–627, 1995. doi:10.1109/18.382009.
  • Donoho, D. L. and Johnstone, J. M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455, 1994. doi: 10.1093/biomet/81.3.425
  • Luisier, F., Blu, T. and Unser, M. A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE T. Image Process. 16:593–606, 2007. doi:10.1109/TIP.2007.891064
  • Xu, Q., Ma, L., Li, M., Wang, W., Cai, J., Brunelli, R. and Messelodi, S. Fuzzy weighted average filtering for mixture noises. In Third International Conference on Image and Graphics pp. 18–21, 2004. doi:10.1109/ICIG.2004.70
  • Lamichhane, B. P. Finite element techniques for removing mixture of gaussian and impulsive noise. IEEE T. Signal Process. 57:2538–2547, 2009. doi:10.1109/TSP.2009.2016272
  • Duchon, J. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics 571:85–100. Springer-Verlag Berlin, 1977. doi:10.1007/BFb0086566
  • Wahba, G. Spline Models for Observational Data, vol. 59, of Series in Applied Mathematic. SIAM, Philadelphia, 1990. doi:10.1137/1.9781611970128
  • Quarteroni, A. and Valli, A. Numerical approximation of partial differential equations. Springer–Verlag, Berlin, 1994. doi:10.1007/978-3-540-85268-1
  • Goldstein, T. and Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2:323–343, 2009. doi:10.1137/080725891
  • Wang, Y., Yang, J., Yin, W. and Zhang, Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1:248–272, 2008. doi:10.1137/080724265
  • van den Doel, K., Ascher, U. M. and Haber, E. The lost honour of l2-based regularization. In Large Scale Inverse Problems Radon Series on Computational and Applied Mathematics 13:181–203. De Gruyter, 2012. http://www.degruyter.com/viewbooktoc/product/182025

Keywords


Finite element method, total variation, scattered data interpolation, split Bregman method, impulsive and Gaussian noise

Full Text:

PDF BIB


DOI: http://dx.doi.org/10.21914/anziamj.v56i0.9316



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.