Cauchy integrals for computational solutions of master equations
DOI:
https://doi.org/10.21914/anziamj.v56i0.9345Abstract
Cauchy contour integrals are demonstrated to be effective in computationally solving master equations. A fractional generalization of a bimolecular master equation is one interesting application. References- A. Andreychenko, L. Mikeev, D. Spieler, and V. Wolf. Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP J. Bioinf. Sys. Biol., 2012:9, 2012. doi:10.1186/1687-4153-2012-9
- C. N. Angstmann, I. C. Donnelly, B. I. Henry, and J. A. Nichols. A discrete time random walk model for anomalous diffusion. J. Comput. Phys., 293:53–69, 2014. doi:10.1016/j.jcp.2014.08.003
- Y. Berkowitz, Y. Edery, H. Scher, and B. Berkowitz. Fickian and non-Fickian diffusion with bimolecular reactions. Phys. Rev. E, 87:032812, 2013. doi:10.1103/PhysRevE.87.032812
- J. C. Butcher. On the numerical inversion of Laplace and Mellin transforms. Conference on Data Processing and Automatic Computing Machines, 117:1–8, 1957.
- D. Ding, D. A. Benson, A. Paster, and D. Bolster. Modeling bimolecular reactions and transport in porous media via particle tracking. Adv. Water Resour., 53:56–65, 2013. doi:10.1016/j.advwatres.2012.11.001
- B. Drawert, S. Engblom, and A. Hellander. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol., 6:76, 2012. doi:10.1186/1752-0509-6-76
- T. A Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide. Pafnuty Publications, 2014. http://www.chebfun.org/docs/guide/
- N. Dunford and J. Schwartz. Linear Operators I, II, III. Wiley New York, 1971. http://au.wiley.com/WileyCDA/WileyTitle/productCd-0471608483.html, http://au.wiley.com/WileyCDA/WileyTitle/productCd-0471608475.html, http://au.wiley.com/WileyCDA/WileyTitle/productCd-0471608467.html
- D. Fulger, E. Scalas, and G. Germano. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E, 77:021122, 2008. doi:10.1103/PhysRevE.77.021122
- D. Gillespie. Markov Processes: An Introduction for Physical Scientists. Academic Press, 1991. http://www.elsevier.com/books/markov-processes/gillespie/978-0-12-283955-9
- M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth. A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205(2):708–724, 2006. doi:10.1016/j.cam.2006.02.053
- B. I. Henry, T. A. M. Langlands, and S. L. Wearne. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E, 74(3):031116, 2006. doi:10.1103/PhysRevE.74.031116
- N. J. Higham. Functions of Matrices. SIAM, 2008. doi:10.1137/1.9780898717778
- R. Hilfer and L. Anton. Fractional master equations and fractal time random walks. Phys. Rev. E, 51:R848, 1995. doi:10.1103/PhysRevE.51.R848
- K. J. in 't Hout and J. A. C. Weideman. A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput., 33:763–785, 2011. doi:10.1137/090776081
- T. Jahnke and D. Altintan. Efficient simulation of discrete stochastic reaction systems with a splitting method. BIT, 50:797–822, 2010. doi:doi:10.1007/s10543-010-0286-0
- T. Kato. Perturbation theory for linear operators. Springer-Verlag, 1976. http://link.springer.com/book/10.1007%2F978-3-642-66282-9
- V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger. Generalized master equations for continuous-time random walks. J. Stat. Phys., 9(1):45, 1973. doi:10.1007/BF01016796
- M. Lopez-Fernandez and C. Palencia. On the numerical inversion of the Laplace transform in certain holomorphic mappings. Appl. Numer. Math., 51:289–303, 2004. doi:10.1016/j.apnum.2004.06.015
- S. MacNamara, K. Burrage, and R. B. Sidje. Multiscale modeling of chemical kinetics via the master equation. SIAM Multiscale Model. Simul., 6(4):1146–1168, 2008. doi:10.1137/060678154
- M. Magdziarz, A. Weron, and K. Weron. Fractional Fokker–Planck dynamics: Stochastic representation and computer simulation. Phys. Rev. E, 75:016708, 2007. doi:10.1103/PhysRevE.75.016708
- F. Mainardi, R. Gorenflo, and A. Vivoli. Beyond the Poisson renewal process: A tutorial survey. J. Comput. Appl. Math., 2007. doi:10.1016/j.cam.2006.04.060
- W. McLean. Regularity of solutions to a time-fractional diffusion equation. ANZIAM J., 52(2):123–138, 2010. doi:10.1017/S1446181111000617
- W. McLean and V. Thomee. Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal., 24:439–463, 2004. doi:10.1093/imanum/24.3.439
- R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339:1–77, 2000. doi:10.1016/S0370-1573(00)00070-3
- C. Moler and C. Van Loan. Nineteen Dubious Ways to Compute the Exponential of a Matrix, 25 Years Later. SIAM Rev., 45(1):3–49, 2003. doi:10.1137/S00361445024180
- E. W. Montroll and G. H. Weiss. Random Walks on Lattices. II. J. Math. Phys., 6(2):167–181, 1965. doi:10.1063/1.1704269
- I. Moret and P. Novati. On the Convergence of Krylov Subspace Methods for Matrix Mittag–Leffler Functions. SIAM J. Numer. Anal., 49(5):2144–2164, 2011. doi:10.1137/080738374
- I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, 1999. http://www.elsevier.com/books/fractional-differential-equations/podlubny/978-0-12-558840-9
- M. Raberto, F. Rapallo, and E. Scalas. Semi-Markov Graph Dynamics. PLoS ONE, 6(8):e23370, 2011. doi:10.1371/journal.pone.0023370
- S. C. Reddy and L. N. Trefethen. Pseudospectra of the convection-diffusion operator. SIAM J. Appl. Math., 54(6):1634–1649, 1994. doi:10.1137/S0036139993246982
- E. B. Saff and A. D. Snider. Fundamentals of complex analysis with applications to engineering and science. Pearson Education, 2003. http://www.pearsonhighered.com/educator/product/Fundamentals-of-Complex-Analysis-with-Applications-to-Engineering-Science-and-Mathematics/9780139078743.page
- E. Scalas, R. Gorenflo, and F. Mainardi. Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E, 69:011107, 2004. doi:10.1103/PhysRevE.69.011107
- D. Sheen, I. H. Sloan, and V. Thomee. A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal., 23:269–299, 2003. doi:10.1093/imanum/23.2.269
- M. J. Shon and A. E. Cohen. Mass action at the single-molecule level. J. Am. Chem. Soc., 134(35):14618–14623, 2012. doi:10.1021/ja3062425
- G. Strang and S. MacNamara. Functions of difference matrices are Toeplitz plus Hankel. SIAM Rev., 56(3):525–546, 2014. doi:10.1137/120897572
- A. Talbot. The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl., 23:97–120, 1979. doi:10.1093/imamat/23.1.97
- L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM, Philadelphia, 2013. http://bookstore.siam.org/ot128/
- L. N. Trefethen and M. Embree. Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press, 2005. http://press.princeton.edu/titles/8113.html
- L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal rule. SIAM Rev., 56(3):385–458, 2014. doi:10.1137/130932132
- N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier Science, 2001. http://www.elsevier.com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7
- J. A. C. Weideman. Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal., 30:334–350, 2010. doi:10.1093/imanum/drn074
- J. A. C. Weideman and L. N. Trefethen. Parabolic and hyperbolic contours for computing the bromwich integral. Math. Comput., 76:1341–1356, 2007. doi:10.1090/S0025-5718-07-01945-X
- T. G. Wright. Eigtool, 2002. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.
- Q. Yang, T. Moroney, K. Burrage, I. Turner, and F. Liu. Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions. ANZIAM J., 52:395–409, 2011. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3791/1463
Published
2015-10-12
Issue
Section
Proceedings Computational Techniques and Applications Conference