Investigating wind effects on insect migration

Authors

  • Zhenhua Hao School of Physical, Environmental and Mathematical Sciences, UNSW Canberra 2610
  • Alistair Drake School of Physical, Environmental and Mathematical Sciences, UNSW Canberra 2610, and Institute of Applied Ecology, University of Canberra, Canberra 2601
  • Leesa Sidhu School of Physical, Environmental and Mathematical Sciences, UNSW Canberra 2610
  • John Robert Taylor School of Physical, Environmental and Mathematical Sciences, UNSW Canberra 2610

DOI:

https://doi.org/10.21914/anziamj.v56i0.9349

Abstract

Understanding the response of migrating insects to the wind along their path is an active area in insect migration research. In this article, two methods for describing wind response are illustrated and evaluated by analysing a model of migratory movement with a realistic scatter in the flight direction. The results show that both methods give robust and reliable results when insects simply maintain a constant heading in response to winds with a cross track component. However, neither method is reliable for evaluating whether insects are compensating for wind drift and maintaining a constant track towards their destination. References
  • J. W. Chapman, R. H. G. Klaassen, V. A. Drake, S. Fossette, G. C. Hays, J. D. Metcalfe, A. M. Reynolds, D. R. Reynolds and T. Alerstam. Animal orientation strategies for movement in flows. Curr. Biol., 21(20):R861–R870, 2011. doi:10.1016/j.cub.2011.08.014
  • J. W. Chapman, R. L. Nesbit, L. E. Burgin, D. R. Reynolds, A. D. Smith, D. R. Middleton and J. K. Hill. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science, 327(5966):682–685, 2010. doi:10.1126/science.1182990
  • J. W. Chapman, D. R. Reynolds, J. K. Hill, D. Sivell, A. D. Smith and I. P. Woiwod. A seasonal switch in compass orientation in a high-flying migrant moth. Curr. Biol., 18(19):R908–R909, 2008. doi:10.1016/j.cub.2008.08.014
  • J. W. Chapman, D. R. Reynolds, H. Mouritsen, J. K. Hill, J. R. Riley, D. Sivell, A. D. Smith and I. P. Woiwod. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol., 18(7):514–518, 2008. doi:10.1016/j.cub.2008.02.080
  • M. Green and T. Alerstam. The problem of estimating wind drift in migrating birds. J. Theor. Biol., 218(4):485–496, 2002. doi:10.1016/s0022-5193(02)93094-8
  • P. Hurley. TAPM V4. Part 1: Technical Description. CSIRO Technical Report No. 25, 2008. http://www.cmar.csiro.au/research/tapm/docs/tapm_v4_technical_paper_part1.pdf
  • V. A. Drake and H. Wang. Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar. J. Appl. Remote Sens., 7(1):075095, 2013. doi:10.1117/1.jrs.7.075095
  • P. Hurley, M. Edwards and A. Luhar. TAPM V4. Part 2: Summary of some verification studies. CSIRO Technical Report No. 26, 2008. https://www.cmar.csiro.au/research/tapm/docs/tapm_v4_technical_paper_part2.pdf
  • J. R. Taylor, P. Zawar-Reza, J. Low David and P. Aryal. Verification of a mesoscale model using boundary layer wind profiler data. In Proceedings of the Australian Institute of Physics 16th Biennial Congress, 2005. http://aipcongress2005.anu.edu.au/index.php?req=CongressProceedings
  • E. Batschelet. Circular statistics in biology, volume 371. Academic Press London, 1981. http://trove.nla.gov.au/version/28653761

Published

2016-02-17

Issue

Section

Proceedings Computational Techniques and Applications Conference