Well-balanced computations of weak local residuals for the shallow water equations
DOI:
https://doi.org/10.21914/anziamj.v56i0.9369Keywords:
weak local residual, local truncation error, smoothness indicator, shock detector, finite volume method, shallow water equations, balance laws, conservation lawsAbstract
The one-dimensional shallow water equations describe mass conservation and momentum conservation. We propose a well-balanced numerical technique for computing weak local residuals of the momentum equation. We compare the performance of weak local residuals of the momentum equation to those of the mass equation. All weak local residuals behave similarly. References- E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25:2050–2065, 2004. doi:10.1137/S1064827503431090.
- A. Bermudez and M. E. Vazquez. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids, 23:1049–1071, 1994. doi:10.1016/0045-7930(94)90004-3.
- L. A. Constantin and A. Kurganov. Adaptive central-upwind schemes for hyperbolic systems of conservation laws. In F. Asakura, S. Kawashima, A. Matsumura, S. Nishibata, K. Nishihara (Eds.) Hyperbolic problems: Theory, numerics, and applications. Vol. 1 of Proceedings of the 10th international conference, Osaka, Japan, 13–17 September 2004, Yokohama Publishers, Yokohama, 2006, pages 95–103, 2006. http://www.ybook.co.jp/pub/ISBN4-946552-21-9.htm, http://129.81.170.14/ kurganov/Constantin-Kurganov.pdf
- S. Karni and A. Kurganov. Local error analysis for approximate solutions of hyperbolic conservation laws. Adv. Comput. Math. 22:79–99, 2005. doi:10.1007/s10444-005-7099-8
- S. Karni, A. Kurganov, and G. Petrova. A smoothness indicator for adaptive algorithms for hyperbolic systems. J. Comput. Phys. 178:323–341, 2002. doi:10.1006/jcph.2002.7024
- R. Knobel. An Introduction to the Mathematical Theory of Waves. American Mathematical Society, Providence, 2000. http://www.ams.org/bookstore-getitem/item=stml-3
- S. Mungkasi. A Study of Well-Balanced Finite Volume Methods and Refinement Indicators for the Shallow Water Equations. PhD thesis, Australian National University, Canberra, 2012. http://hdl.handle.net/1885/10301
- S. Mungkasi and S. G. Roberts. On the best quantity reconstructions for a well balanced finite volume method used to solve the shallow water wave equations with a wet/dry interface. ANZIAM J. 51:C48–C65, 2009 http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2576
- S. Mungkasi and S. G. Roberts. Numerical entropy production for shallow water flows. ANZIAM J. 52:C1–C17, 2010. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3786
- S. Noelle, N. Pankratz, G. Puppo, and J. R. Natvig. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phy. 213:474–499, 2006. doi:10.1016/j.jcp.2005.08.019
- P. L. Roe. Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18:337–365, 1986. doi:10.1146/annurev.fl.18.010186.002005
- J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1983. doi:10.1007/978-1-4612-0873-0
Published
2015-12-09
Issue
Section
Proceedings Computational Techniques and Applications Conference