A probabilistic inverse method for volcanic ash dispersion modelling
DOI:
https://doi.org/10.21914/anziamj.v56i0.9384Keywords:
Inverse modelling, volcanic ash, data assimilation, meteorology, dispersion modellingAbstract
We present a new inverse modelling approach for integrating satellite detections of volcanic ash with dispersion models. We demonstrate the utility of this approach in estimating the ash column height in the February 2014 eruption of Mount Kelut in Java, Indonesia. We show that the inferred height is consistent with estimates obtained by other remote sensing techniques. This method may be used to obtain estimates of model parameters such as ash column height in cases where no such information is available or is subject to significant uncertainty. References- Casadevall, T. J., (Ed) Volcanic ash and aviation safety; proceedings of the First international symposium on Volcanic ash and aviation safety. U.S. Geological Survey, 1994. http://pubs.er.usgs.gov/publication/b2047
- Draxler, R. R., and Hess, G. D., An overview of the hysplit4 modelling system for trajectories. Aust. Met. Mag. 47(4):295–308, 1998. http://www.bom.gov.au/amm/papers.php?year=1998
- Simpson, J. J., Hufford, G., Pieri, D., and Berg, J., Failures in detecting volcanic ash from a satellite-based technique. Remote Sens. Environ. 72(2):191–217, 2000. doi:10.1016/S0034-4257(99)00103-0
- Webster, H. N., Thomson, D. J., Johnson, B. T., Heard, I. P. C., Turnbull, K., Marenco, F., Kristiansen, N. I., Dorsey, J., Minikin, A., Weinzierl, B., Schumann, U., Sparks, R. S. J., Loughlin, S. C., Hort, M. C., Leadbetter, S. J., Devenish, B. J., Manning, A. J., Witham, C. S., Haywood, J. M., and Golding, B. W., Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajokull eruption. J. Geophys. Res.-Atmos. 117(D20), 2012. doi:10.1029/2011JD016790
- Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A., Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling. Atmos. Chem. Phys. 8(14):3881–3897, 2008. doi:10.5194/acp-8-3881-2008
- Kristiansen, N. I., Stohl, A., Prata, A. J., Richter, A., Eckhardt, S., Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Stebel, K., Remote sensing and inverse transport modeling of the Kasatochi eruption sulfur dioxide cloud. J. Geophys. Res.-Atmos., 115(D2), 2010. doi:10.1029/2009JD013286
- Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A. , Henne, S., Kristiansen, N. I., Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H. E., Thorsteinsson, T., Torseth, K., and Weinzierl, B., Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajokull eruption. Atmos. Chem. Phys. 11(9):4333–4351, 2011. doi:10.5194/acp-11-4333-2011
- Ohkawara, N, Multifunctional transport satellite (MTSAT). Technical Report. Meteorological Satellite Center, Japan Meteorological Agency, Japan http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.8950&rep=rep1&type=pdf
- Winker, D. M., Pelon, J. R., and McCormick, M. P, The calipso mission: spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, 4893:1–11, 2003. doi:10.1117/12.466539
- Prata, A. J., Infrared radiative transfer calculations for volcanic ash clouds Geophys. Res. Lett. 16(11):1293-1296, 1989. doi:10.1029/GL016i011p01293
- Pavolonis, M. J., Heidinger, A. K., and Sieglaff, J. Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J. Geophys. Res.-Atmos. 118(3):1436-1458, 2013. doi:10.1002/jgrd.50173
Published
2016-01-03
Issue
Section
Proceedings Computational Techniques and Applications Conference