Simulation of micro-scale porous flow using Smoothed Particle Hydrodynamics
DOI:
https://doi.org/10.21914/anziamj.v56i0.9408Abstract
Fluid flow in a porous medium is a well-studied aspect of applied mathematics with significant real-world application. The standard modelling approach for this type of flow is to homogenise the porous structure. A dual-scale model, with the smaller scale at the pore-scale, would possibly capture the fluid mechanical phenomena more faithfully than a volume averaged approach. We investigate the significance of the microstructure shape on the flux through the medium. We also evaluate whether smoothed particle hydrodynamics may be viable in a dual-scale model. We find that varying the shape of the porous structure causes the average flux to vary significantly. This contradicts the assumption commonly made that only the porosity is important. We conclude that there is significant information present in the dual-scale model that is lost by a volume averaged model. We also find that the smoothed particle hydrodynamics simulation is computationally intensive, but that there is a time-saving measure that may provide viability to the dual-scale model. References- S. Alyaev, E. Keilegavlen, and J. M. Nordbotten. Analysis of control volume heterogeneous multiscale methods for single phase flow in porous media. Multiscale Model. Sim., 12(1):335–363, 2014. doi:10.1137/120885541
- H. Brenner. Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. A, 297(1430):81–133, 1980. doi:10.1098/rsta.1980.0205
- L. Brookshaw. A method of calculating radiative heat diffusion in particle simulations. Proc. Astron. Soc. Aust., 6(2):207–210, 1985. http://adsabs.harvard.edu/abs/1985PASAu...6..207B.
- E. J. Carr and I. W. Turner. Two-scale computational modelling of water flow in unsaturated soils containing irregular-shaped inclusions. Int. J. Numer. Meth. Eng., 98(3):157–173, 2014. doi:10.1002/nme.4625
- A. J. Chorin. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 2(1):12–26, 1967. doi:10.1016/0021-9991(67)90037-X
- R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc., 181:375–389, 1977. doi:10.1093/mnras/181.3.375
- S. Litvinov, M. Ellero, X. Y. Hu, and N. A. Adams. A splitting scheme for highly dissipative smoothed particle dynamics. J. Comput. Phys., 229(15):5457–5464, 2010. doi:10.1016/j.jcp.2010.03.040
- L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astron. J., 82(12):1013–1024, 1977. doi:10.1086/112164
- C. C. Mei, J. L. Auriault, and C.-O. Ng. Some applications of the homogenization theory. Adv. Appl. Mech., 32:278–348, 1996. doi:10.1016/S0065-2156(08)70078-4
- J. J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys., 30:543–574, 1992. doi:10.1146/annurev.aa.30.090192.002551
- J. J. Monaghan. Implicit SPH drag and dusty gas dynamics. J. Comput. Phys., 138(2):801–820, 1997. doi:10.1006/jcph.1997.5846
- J. J. Monaghan. From stars to volcanoes: The SPH story. In Eduardo Ramos, Gerardo Cisneros, Rafael Fernandez-Flores, and Alfredo Santillan-Gonzalez, editors, Computational Fluid Dynamics, Proceedings of the Fourth UNAM Supercomputing Conference, pages 193–203, Singapore, 2001. World Scientific. doi:10.1142/4623
- J. J. Monaghan. Smoothed particle hydrodynamics. Rep. Prog. Phys., 68:1703–1759, 2005. doi:10.1088/0034-4885/68/8/R01
- J. P. Morris. A study of the stability properties of smooth particle hydrodynamics. Publ. Astron. Soc. Aust., 13:97–102, 1996. http://adsabs.harvard.edu/abs/1996PASA...13...97M.
- J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys., 136(1):214–226, 1997. doi:10.1006/jcph.1997.5776
- D. J. Price. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys., 231(3):759–794, 2012. doi:10.1016/j.jcp.2010.12.011
- S. Shao and E. Y. M. Lo. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour., 26(7):787–800, 2003. doi:10.1016/S0309-1708(03)00030-7
- R. E. Showalter. Microstructure models of porous media. In Homogenization and Porous Media, pages 183–202. Interdisciplinary Applied Mathematics. Springer New York, 1997. doi:10.1007/978-1-4612-1920-0_9
- A. Szymkiewicz, J. Lewandowska, R. Angulo-Jaramillo, and J. Butlariska. Two-scale modeling of unsaturated water flow in a double-porosity medium under axisymmetric conditions. Can. Geotech. J., 45:238–251, 2008. doi:10.1139/T07-096
- P. van Liedekerke, B. Smeets, T. Odenthal, E. Tijskens, and H. Ramon. Solving microscopic flow problems using Stokes equations in SPH. Comput. Phys. Commun., 184:1686–1696, 2013. doi:10.1016/j.cpc.2013.02.013
- S. Whitaker. Flow in porous media I: A theoretical derivation of Darcy's law. Transport Porous Med., 1(1):3–25, 1986. doi:10.1007/BF01036523
- S. Whitaker. Coupled transport in multiphase systems: A theory of drying. Adv. Heat Trans., 31:1–104, 1998. doi:10.1016/S0065-2717(08)70240-5
Published
2016-03-21
Issue
Section
Proceedings Computational Techniques and Applications Conference