Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation

F. Liu, S. Shen, V. Anh, I. Turner

Abstract


The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order in (0,1). In this work, an explicit finite-difference scheme for TFDE is presented. Discrete models of a non-Markovian random walk are generated for simulating random processes whose spatial probability density evolves in time according to this fractional diffusion equation. We derive the scaling restriction of the stability and convergence of the discrete non-Markovian random walk approximation for TFDE in a bounded domain. Finally, some numerical examples are presented to show the application of the present technique.

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v46i0.973



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.