Simulation of a turbulent premixed open V-shaped flame using contour advection with surgery

B. H. Y. Tang, C. K. Chan, J. S. L. Lam


Despite its capability of high spatial resolution, simulation of turbulent flows with traditional Lagrangian (front tracking) scheme is often discouraged by numerical instability caused by clustering of marker nodes and topological changes of fronts. Contour advection surgery, being a robust front tracking scheme, limits the growth of front complexity during simulation without jeopardizing accuracy or efficiency. This is its advantage over traditional front-tracking schemes. Contour advection surgery, with incorporation of the reaction sheet model, can accurately simulate the propagation and advection of a turbulent premixed V-shaped flame. In this study, it is further tested with ten values of vortex circulation. Upstream turbulence levels ranged over 1.8-19.8%. Results indicate that upstream turbulence increases the average flame length, flame zone area and the overall burning rate. Maximum values of estimated flame surface density ? lie in the range 0.1-1.4/mm with all profiles displaying a skewness towards the burnt region. Similar to results from laboratory experiments, ? values decrease with upstream turbulence. Contour advection surgery copes with intense turbulence. Better quantitative understanding of the scheme has also been acquired.

Full Text:



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.