Dynamic variability and seasonal predictability in an intermediate complexity coupled ocean-atmosphere model

Authors

  • Carsten Segerlund Frederiksen Bureau of Meteorology Centre for Australian Weather and Climate Research PO Box 1289 Melbourne Victoria 3001
  • Jorgen S. Frederiksen Climate Adaptation Flagship, Centre for Australian Weather and Atmospheric Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria~3195, Australia.
  • Ramesh C. Balgovind Bureau of Meteorology, Melbourne, Victoria~3001, Australia.

DOI:

https://doi.org/10.21914/anziamj.v54i0.6296

Abstract

We formulate a numerically efficient coupled ocean-atmosphere model. It consists of a global atmosphere and a Pacific basin ocean, with two dynamical levels in each component. The model has a realistic climatology and displays El Nino--Southern oscillation variability at the observed frequencies. In hindcasts over the period 1981 to 2000, the model displays good skill out to seven months in forecasting the tropical upper ocean temperatures and zonal current anomalies. The most skilful forecasts occur for those initialised during June to November. Skilful predictions for the atmospheric fields generally only extend to one month, but can be as much as three months during major El Nino--Southern oscillation events. References
  • S. G. H. Philander, El Nino, La Nina and the Southern Oscillation. Academic Press, San Diego. 293pp, 1990.
  • C. S. Frederiksen and X. Zheng, Variability of seasonal-mean fields arising from intraseasonal variability: Part 2, Application to NH winter circulations, Clim. Dyn.,23, 193--206, 2004. doi:10.1007/s00382-004-0429-6
  • C. S. Frederiksen and X. Zheng, Variability of seasonal-mean fields arising from intraseasonal variability: Part 3, Application to SH winter and summer circulations, Clim. Dyn.,28, 849--866, 2007. doi:10.1007/s00382-006-0214-9
  • C. F. Ropelewski and M. S. R. Halpert, Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation, Mon. Wea. Rev.,115, 1606--1626, 1987. doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
  • N. E. Graham, J. Michaelson, T. P. Barnett, T.P., An investigation of the El Nino-Southern Oscillation cycle with statistical models: II. Model results. J. Geophys. Res., 92, 14271--14289, 1987. doi:10.1029/JC092iC13p14271
  • M. A. Cane and S. E. Zebiak, A theory for El Nino and the Southern Oscillation. Science, 228, 1085--1087, 1985. doi:10.1126/science.228.4703.1085
  • D. S. Battisti and A. C. Hirst, Interannual variability in the tropical atmosphere-ocean system: influence of the basic state, ocean geometry, and non-linearity. J. Atmos. Sci., 46, 1687--1712, 1989. doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2
  • R. Kleeman, On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model. J. Climate., 6, 2012--2033, 1993. doi:10.1175/1520-0442(1993)006<2012:OTDOHS>2.0.CO;2
  • J. D. Neelin and H. A. Dilkstra, Ocean-atmosphere interaction and the tropical climatology. Part I:the dangers of flux correction. J. Climate., 8, 1325--1342, 1995. doi:10.1175/1520-0442(1995)008<1325:OAIATT>2.0.CO;2
  • M. Latif, K. Sperber, J. Arblaster, P. Braconnot, D. Chen, A. Colman, U. Cubasch, C. Cooper, P. Delecluse, D. Dewitt, L. Fairhead, G. Flato, T. Hogan, M. Ji, M. Kimoto, A. Kitoh, T. Knutson, H. Le Treut, T. Li, S. Manabe, O. Marti, C. Mechoso, G. Meehl, S. Power, E. Roeckner, J. Sirven, L. Terray, A. Vintzileos, R. Voss, B. Wang, W. Washington, I. Yoshikawa, J. Yu and S. Zebiak, ENSIP: the El Nino simulation intercomparison project. Clim. Dyn., 18, 255--276, 2001. doi:10.1007/s003820100174
  • A. Rosati, K. Miyakoda, and R. Gudgel, The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Weath. Rev., 125, 754--772, 1997. doi:10.1175/1520-0493(1997)125<0754:TIOOIC>2.0.CO;2
  • B. P. Kirtman, J. Shukla, B. Huang, Z. Zhu and E. K. Schneider, Multi-seasonal prediction with a coupled tropical ocean global atmosphere system. Mon. Weath. Rev., 125, 789--808, 1997. doi:10.1175/1520-0493(1997)125<0789:MPWACT>2.0.CO;2
  • P. S. Schopf and M. J. Suarez, Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 549--566, 1988. doi:10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2
  • T. N. Palmer, A. Alessandri, U. Andersen, P. Cantelaube, M. Davey, P. De-lecluse, M. Deque, E. Diez, F. J. Doblas-Reyes, H. Feddersen, R. Graham, S. Gualdi, J.-F. Gueremy, R. Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V. Marletto, A. Morse, B. Orfila, P. Rogel, J.-M. Terres and M. C. Thomson, Development of a European multi-model ensemble system for seasonal to interannual prediction (DEMETER). Bull. Am. Met. Soc., 85, 853--872, 2004. doi:10.1175/BAMS-85-6-853
  • E. K. Jin, J. L. Kinter, B. Wang, C.-K. Park, I.-S. Kang, B. P. Kirtman, J.-S. Kug, A. Kumar, J.-J. Luo, J. Schemm, J. Shukla, and T. Yamagata, Current status of ENSO prediction skill in coupled ocean-atmo- sphere models. Clim. Dyn., 31, 647--664, 2008. doi:10.1007/s00382-008-0397-3
  • B. Wang, J.-Y. Lee, I.-S. Kang, J. Shukla, J.-S. Kug, A. Kumar, A., J. Schemm, J.-J. Luo, T. Yamagata, T. and C.-K. Park, How accurately do coupled climate models predict the leading modes of Asian-Australian Monsoon interannual variability? Clim. Dyn., 30, 2008, 605--10. doi:10.1007/s00382-007-0310-5
  • J. S. Frederiksen, C. S. Frederiksen and S. L. Osbrough. Methods of ensemble prediction for seasonal forecasts with a coupled ocean-atmosphere model. ANZIAM J., submitted.
  • D. Levitus, Climatological atlas of the world ocean. NOAA/ERL GFDL Professional Paper 13. Princeton, N.J., 173pp, 1982 (NTIS PB83184093).
  • R. W. Reynolds and T. M. Smith, Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation, J. Climate,7, 929--948, 1994. doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
  • C. Torrence and G. P. Compo, A Practical Guide to Wavelet Analysis, Bull. Am. Met. Soc.,79, 61--78, 1998. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  • K. F. Hasselmann, PIPs and POPs: The reduction of complex dynamical systems using Principal Interaction and Oscillation Patterns, J. Geophys. Res.,93, 11015--11021, 1988. doi:10.1029/JD093iD09p11015
  • I. T. Jolliffe, Principal Component Analysis. Springer Verlag. 271pp, 1986.

Published

2013-05-12

Issue

Section

Proceedings Computational Techniques and Applications Conference