ANZIAM J. 46(E) ppC1--C14, 2005.
Asymptotic correction and inverse eigenvalue problems: an overview
Alan L. Andrew |
Abstract
Asymptotic correction was first used by Paine, de Hoog and Anderssen to improve the accuracy of finite difference approximations of higher Sturm--Liouville eigenvalues. Later it was used to develop an important class of methods for numerical solution of inverse Sturm--Liouville problems. It also shows promise as a method for the solution of more general inverse eigenvalue problems, including some involving partial differential equations and higher order operators. We critically review the literature on this subject and discuss some important open questions.
Download to your computer
- Click here for the PDF article (203 kbytes) We suggest printing 2up.
- Click here for its BiBTeX record
Authors
- Alan L. Andrew
- Mathematics Department, La Trobe University, Victoria 3086, Australia. mailto:a.andrew@latrobe.edu.au
Published 7 March 2005, amended March 22, 2005. ISSN 1446-8735
References
- A. L. Andrew. Some recent developments in inverse eigenvalue problems. In D. Stewart, H. Gardner and D. Singleton, editors, {Computational Techniques and Applications: CTAC93}, pages 94--102. World Scientific, 1994.
- A. L. Andrew. Centrosymmetric matrices. {SIAM Rev.}, 40:697--698, 1998.
- A. L. Andrew. Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions. {J. Comput. Appl. Math.}, 125:359--366, 2000.
- A. L. Andrew. Twenty years of asymptotic correction for eigenvalue computation. {ANZIAM J.}, 42(E):C96--C116, 2000. [Online] http://anziamj.austms.org.au/V42/CTAC99/Andr.
- A. L. Andrew. Asymptotic correction of more Sturm--Liouville eigenvalue estimates. {BIT}, 43:485--503, 2003.
- A. L. Andrew. Numerical solution of inverse Sturm--Liouville problems. {ANZIAM J.}, 45(E):C326--C337, 2004. [Online] http://anziamj.austms.org.au/V45/CTAC2003/Andr.
- A. L. Andrew. Numerov's method for inverse Sturm--Liouville problems. {Inverse Problems}, 21:223--238, 2005. [Online] http://stacks.iop.org/0266-5611/21/223.
- A. L. Andrew and J. W. Paine. Correction of Numerov's eigenvalue estimates. {Numer. Math.}, 47:289--300, 1985.
- A. L. Andrew and J. W. Paine. Correction of finite element estimates for Sturm-Liouville eigenvalues. {Numer. Math.}, 50:205--215, 1986.
- Z.-J. Bai, R. H. Chan and B. Morini. An inexact Cayley transform method for inverse eigenvalue problems. {Inverse Problems}, 20:1675--1689, 2004.
- M. T. Chu. Inverse eigenvalue problems. {SIAM Rev.}, 40:1--39, 1998.
- D. C. Condon. {Asymptotic correction of Sturm--Liouville eigenvalue estimates.} PhD thesis, La Trobe University, Melbourne, 2002.
- C. R. Dun. {Algebraic correction methods for two-dimensional eigenvalue problems.} PhD thesis, Australian National University, Canberra, 1995.
- C. R. Dun and R. S. Anderssen. Algebraic correction methods for inverse Sturm-Liouville problems. In D. Stewart, H. Gardner and D. Singleton, editors, {Computational Techniques and Applications: CTAC93}, pages 202--210. World Scientific, 1994.
- R. H. Fabiano, R. Knobel and B. D. Lowe. A finite difference algorithm for an inverse Sturm-Liouville problem. {IMA J. Numer. Anal.}, 15:75--88, 1995.
- O. H. Hald. Inverse eigenvalue problems for Jacobi matrices. {Linear Algebra Appl.}, 14:63--85, 1976.
- O. H. Hald. The inverse Sturm-Liouville problem and the Rayleigh-Ritz method. {Math. Comput.}, 32:687--705, 1978.
- M. Hegland and J. T. Marti. Algorithms for the reconstruction of special Jacobi matrices from their eigenvalues. {SIAM J. Matrix Anal. Appl.}, 10:219--228, 1989.
- J. T. Marti. Small potential corrections for the discrete eigenvalues of the Sturm-Liouville problem. {Numer. Math.}, 57:51--62, 1990.
- F. Natterer. A Lanczos type algorithm for inverse Sturm--Liouville problems. {Proc. Centre Math. Appl. Austral. Nat. Univ.}, 57:82--88, 1992.
- J. Paine. A numerical method for the inverse Sturm--Liouville problem. {SIAM J. Sci. Stat. Comput.}, 5:149--156, 1984.
- J. W. Paine, F. R. de Hoog and R. S. Anderssen. On the correction of finite difference eigenvalue approximations. {Computing}, 26:123--139, 1981.
- M. H. Pirovino. {Das Sturm--Liouville--Problem als direktes und inverses Eigenwertproblem und seine numerische Behandlung durch finite Differenzen}. Dissertation 9683, ETH Zurich, 1992.
- M. H. Pirovino. {The inverse Sturm--Liouville problem and finite differences} Res. Rep. 93-04, Sem. Angew. Math. ETH Zurich, 1993.
- J. Poschel and E. Trubowitz. {Inverse spectral theory.} Academic Press, 1987.
- J. D. Pryce. {Numerical solution of Sturm-Liouville problems.} Oxford University Press, 1993.
- W. Rundell and P. E. Sacks. Reconstruction techniques for classical Sturm--Lioville problems. {Math. Comp.}, 58:161--183, 1992.