ANZIAM J. 46(E) pp.C786--C804, 2005.

Achieving Brouwer's law with high-order Stormer multistep methods

K. R. Grazier

W. I. Newman

James M. Hyman

Philip W. Sharp

David J. Goldstein

(Received 28 October 2004, revised 13 July 2005)

Abstract

The integration of Newton's equations of motion for self-gravitating systems, particularly in the context of our Solar System's evolution, remains a paradigm for complex dynamics. We implement Stormer's multistep method in backward difference, summed form and perform arithmetic according to what we call `significance ordered computation.' We achieve results where the local truncation error of our order thirteen integrator resides below machine (double) precision and roundoff error accumulation is strictly random and not systematic.

Download to your computer

Authors

K. R. Grazier
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. mailto:krg@anlashok.jpl.nasa.gov
W. I. Newman
Departments of Earth & Space Sciences, Physics & Astronomy, and Mathematics, University of California, Los Angeles, CA 90095-1567, USA. mailto:win@ucla.edu
James M. Hyman
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. mailto:mac@t7.lanl.gov
Philip W. Sharp
Department of Mathematics, Private Bag 92019, Auckland, New Zealand. mailto:sharp@math.auckland.ac.nz
David J. Goldstein
Consultant, Culver City, CA, USA. mailto:acwdjg@comcast.net

Published August 23, 2005. ISSN 1446-8735

References

  1. D. Brouwer. On the accumulation of errors in numerical integration. Astron. J. 46:149--153, 1937.
  2. M. Duncan, T. Quinn, and S. Tremaine. The long-term evolution of orbits in the Solar System --- A mapping approach. Icarus, 82:402--419, 1989.
  3. K. Feng and M. Z. Qin. The symplectic methods for the computation of Hamiltonian Equations. Proc. Conf. Num. Methods for PDE's. Berlin: Springer--Verlag, 1--37, 1987.
  4. D. J. Goldstein. The Near Optimality of Stormer Methods for Long Time Integration of $y'' = g(y)$. Ph. D. Thesis, Department of Mathematics, University of California, Los Angeles, 1996.
  5. K. R. Grazier, W. I. Newman, W. M. Kaula, and J. M. Hyman. Dynamical evolution of planetesimals in the outer Solar System. I. The Jupiter/Saturn zone. Icarus 140:341--352, 1999.
  6. K. R. Grazier, W. I. Newman, W. M. Kaula, and J. M. Hyman. Dynamical devolution of planetesimals in the outer Solar System. II. The Saturn/Uranus and Uranus/Neptune zones. Icarus 140:353--368, 1999.
  7. E. Hairer, S. P. N\o rsett, and G. Wanner. Solving Ordinary Differential Equations, second revised edition. Berlin: Springer-Verlag.
  8. P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. New York: John Wiley & Sons, 1962.
  9. N. J. Higham. Accuracy and Stability of Numerical Algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 1996.
  10. M. J. Holman. A possible long-lived belt of objects between Uranus and Neptune. Nature. 387:785--788, 1997.
  11. T. Ito and K. Tanikawa. Long-term integrations and stability of planetary orbits in our Solar System. MNRAS 336:483--500, 2003.
  12. G. D. Quinlan. Round-off error in long-term orbital integrations using multistep methods. Celest. Mech. Dyn. Astron. 58:339--351, 1994.
  13. T. Quinn and S. Tremaine. Roundoff error in long-term planetary orbit integrations. Astron. J. 99:1016--1023, 1990.
  14. A. E. Roy. Orbital motion. 3 ed., Adam Hilger, ISBN 0-85274-229-0, 1988.