ANZIAM J. 46(E) pp.C1239--C1253, 2005.

Numerical modelling of the effect of operating parameters in the plastic blown film process

A. Khan

J. J. Shepherd

S. Bhattacharya

(Received 20 December 2004, revised 24 October 2005)

Abstract

The blown film process with polymer melts is modelled using non-isothermal viscoelastic rheological constitutive equations that are suitable for polyolefins. The model correlates the operating parameters such as mass flows, extruder temperature, tensile axial force and take-up force on processes such as bubble geometry and bubble temperature profile. Unlike Luo and Tanner [Poly. Eng. Sci., Vol. 25, 1985] who used the Maxwell constitutive equation, this study considers the viscoelastic Kelvin model that avoids any assumption regarding stress at the die exit. Like Luo and Tanner, the model uses shooting techniques to match the initial and boundary conditions from the freeze line and the die. The pressure drop and the take-up force are estimated as parameters that are optimized with the boundary conditions using the Nelder--Mead optimization method with Matlab. Effects of varying elasticity parameters and heat transfer coefficients on the bubble geometry, the pressure drop and take-up force are investigated.

Download to your computer

Authors

A. Khan
School of Civil and Chemical Engineering , RMIT University, Melbourne, Australia. mailto:ashfaq.khan@rmit.edu.au
J. J. Shepherd
School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia. mailto:jshep@rmit.edu.au
S. Bhattacharya
School of Civil and Chemical Engineering , RMIT University, Melbourne, Australia. mailto:satinath.bhattacharya@rmit.edu.au

Published November 17, 2005. ISSN 1446-8735

References

  1. B. Cao and G. A. Campbell. Viscoplastic-elastic modeling of the tubular blown film processing. AIChE J., Vol. 36, p.420, 1990.
  2. J. J. Cain and M. M. Denn. Multiplicities and instabilities in film blowing. Poly. Eng. Sci., Vol. 28, p.1527, 1988.
  3. A. Ghaneh-Fard, P. J. Carreau and P. G. Lafleur. Study of kinematics and dynamics of film blowing of different polyethylenes. Poly. Eng. Sci., Vol. 37, p.1148, 1988.
  4. R. K. Gupta, A. B. Metzner and K. F. Wissbrun. Modeling of polymeric film blowing process. Poly. Eng. Sci., Vol. 22, p.172, 1982.
  5. C. D. Han and J. Y. Park. Studies on blown film extrusion 2. analysis of the deformation and heat transfer processes. J. Appl. Polym. Sci., Vol. 19, p.3277, 1975. http://dx.doi.org/10.1002/app.1975.070191213
  6. H. A. Khonakdar, J. Morsshedian and A. O. Nodehl. Mathematical and computational modeling of heat transfer and deformation in film blowing process. J. Appl. Polym. Sci., Vol. 86, p.2112, 2002. http://dx.doi.org/10.1002/app.10769
  7. X-L. Luo and R. I. Tanner. A computer study of film blowing. Poly. Eng. Sci., Vol. 25, 1985.
  8. S. Muke, H. Connell, I. Sbarski and S. Bhattacharya. Numerical modelling and experimental verification of blown film processing. J. Non-Newt. Fluid Mech., Vol. 116, p.113, 2003. http://dx.doi.org/10.1016/j.jnnfm.2003.09.002
  9. I. Muslet and M. Kamal. Computer simulation of the film blowing process incorporating crystallization and viscoelasticity. J. Rheol., Vol. 48, p.525, 2004. http://dx.doi.org/10.1122/1.1718500
  10. T. A. Osswald. Polymer processing fundamentals. Hanser, 1998.
  11. J. R. Pearson and P. A. Gutteridge. Stretching flow for thin film production. Part 1. Bubble blowing in the solid phase. J. Non-Newt. Fluid Mech., Vol. 4, p.57, 1978.
  12. J. R. A. Pearson and C. J. S. Petrie. The flow of a tubular film, Part 1. J. Fluid. Mech, Vol. 40, p.1, 1970.
  13. C. J. S. Petrie. Memory effects in non-uniform flow: a study of the behaviour of a tubular film of viscoelastic fluid. Rheologica Acta, Vol. 12, p.92, 1973.
  14. J. J. Shepherd and J. C. Bennett. Interior layer structure in the Newtonian blown film. ANZIAM J., 46(E) pp.C839--C853, 2005. http://anziamj.austms.org.au/V46/CTAC2004/Shep
  15. M. H. Wagner. Das folienblasverfahren als rheologisch-thermodynamischer Proze\ss . Rheol. Acta, Vol. 15, p.40, 1976.