ANZIAM J. 46(E) ppC245--C259, 2005.

Two-point boundary value problems, Green's functions, and product integration

G. D. McBain

S. W. Armfield

(Received 21 October 2004, revised 28 February 2005)

Abstract

When the Green's function for a two-point boundary value problem can be found, the solution for any forcing term reduces to a quadrature. Here we investigate using this as the basis for numerical schemes for boundary value problems and parabolic initial-boundary value problems. Application of Gaussian quadrature is disappointing, only converging slowly due to the discontinuous derivative of the Green's functions; however, rapid convergence is recovered by the use of product integration; that is, the prior accurate evaluation of Green's integral for a set of basis functions and the subsequent evaluation for arbitrary forcing functions by a matrix-vector multiplication. The method requires more operations than finite differencing for the same number of nodes, but converges far more rapidly. For small numbers of nodes, the performance is similar to that for orthogonal collocation; however, at high resolution, collocation accuracy deteriorates due to ill-conditioning whereas the present method is stable.

Download to your computer

Authors

G. D. McBain
S. W. Armfield
School of Aerospace, Mechanical, & Mechatronic Engineering, The University of Sydney, Australia. mailto:geordie.mcbain@aeromech.usyd.edu.au and mailto:armfield@aeromech.usyd.edu.au

Published April 27, 2005. ISSN 1446-8735

References

  1. S. Armfield and R. Street. Modified fractional-step methods for the {Navier--Stokes} equations. ANZIAM J., 45(E):C364--C377, 2004. http://anziamj.austms.org.au/V45/CTAC2003/Armf
  2. K. Atkinson. An automatic program for linear {Fredholm} integral equations of the second kind. ACM Trans. Math. Software, 2:154--171, 1976. http://doi.acm.org/10.1145/355681.355686
  3. C. Basdevant, M. Deville, P. Haldenwang, J. M. Lacroix, J. Onazzoni, R. Peyret, P. Orlandi, and A. T. Patera. Spectral and finite difference solution of the {Burgers} equation. Comput. & Fluids, 14:23--41, 1986. http://dx.doi.org/10.1016/0045-7930(86)90036-8
  4. P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic, New York, 2nd edition, 1984. http://www.ams.org/msnmain?fn=130&pg1=MR&s1=760629
  5. M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, 2002. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521453097
  6. L. Fejer. Mechanische {Quadraturen} mit positiven {Cotesschen} {Zahlen}. Math. Z., 37:287--309, 1933.
  7. R. P. Garg, J. H. Ferziger, and S. G. Monismith. Hybrid spectral finite difference simulations of stratified turbulent flows on distributed memory architectures. Intl J. Numer. Methods Fluids, 24:1129--1158, 1997. http://www3.interscience.wiley.com/cgi-bin/abstract/61002258/
  8. S. Kumar and I. H. Sloan. A new collocation-type method for {Hammerstein} integral equations. Math. Comp., 48:585--593, 1987. http://www.ams.org/msnmain?fn=130&pg1=MR&s1=878692
  9. G. D. McBain. Poloidal--toroidal decomposition of doubly periodic vector fields. {Part} 2. {The} {Stokes} equations, 19 Mar. 2004. Submitted for publication in ANZIAM J.
  10. J. Villadsen and M. L. Michelsen. Solution of Differential Equation Models by Polynomial Approximation. Prentice--Hall, 1978.
  11. J. A. C. Weideman and S. C. Reddy. A Matlab differentiation matrix suite. ACM Trans. Math. Software, 26:465--519, 2000. http://doi.acm.org/10.1145/365723.365727