ANZIAM J. 46(E) ppC379--C393, 2005.

Fast and accurate closure approximations for bead-spring models of dilute polymer solutions

R. Prabhakar

J. R. Prakash

(Received 25 October 2004, revised 6 April 2005)

Abstract

Dilute polymer solutions, besides being widely used in the chemical industry, are used to understand the physical processes that govern the dynamics of isolated macromolecules in solution. Several recent studies used Brownian dynamics simulations of mesoscale bead-spring chain models to demonstrate that the finite extensibility of polymer chains and the existence of fluctuating hydrodynamic interactions between different parts of the chains play a key role in determining the behaviour of polymer solutions in strong flows. Three closure approximations which incorporate these phenomena are presented which offer considerable gains in computational efficiency. The predictions of these approximate models are in good agreement with the results of simulations in strong extensional flows.

Download to your computer

Authors

R. Prabhakar
J. R. Prakash
Dept. of Chem. Engg., Monash University, Clayton, Victoria, Australia. mailto:ravi.jagadeeshan@eng.monash.edu.au

Published May 21, 2005. ISSN 1446-8735

References

  1. R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids --- Volume 1: Fluid Mechanics. John Wiley, New York, second edition, 1987.
  2. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids --- Volume 2: Kinetic Theory. John Wiley, New York, second edition, 1987.
  3. P. Ilg, I. V. Karlin, and H. C. {O}ttinger. Canonical distribution functions in polymer dynamics. ({I}). {D}ilute solutions of flexible polymers. Physica A, 315:367--385, 2002. http://dx.doi.org/10.1016/S0378-4371(02)01017-8
  4. A. J. Kisbaugh and A. J. McHugh. A discussion of shear-thickening in bead-spring models. J. Non-Newtonian Fluid Mech., 34:181--206, 1990. http://dx.doi.org/10.1016/0377-0257(90)80017-T
  5. J. J. Magda, R. G. Larson, and M. E. Mackay Deformation-dependent hydrodynamic interaction in flows of dilute polymer solutions. J. Chem. Phys., 89:2504-2513, 1988. http://dx.doi.org/10.1063/1.455044
  6. H. C. {O}ttinger. Generalized {Z}imm model for dilute polymer solutions under theta conditions. J. Chem. Phys., 86(6):3731--3749, 1987. http://dx.doi.org/10.1063/1.451975
  7. H. C. {O}ttinger. A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. {I}. {B}asic equations and series expansions. J. Non-Newtonian Fluid Mech., 26(2):207--246, 1987. http://dx.doi.org/10.1016/0377-0257(87)80005-8
  8. H. C. {O}ttinger. Gaussian approximation for {R}ouse chains with hydrodynamic interaction. J. Chem. Phys., 90(1):463--473, 1989. http://dx.doi.org/10.1063/1.456496
  9. A. Peterlin. Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. J. Poly. Sci. B, Poly. Lett., B4:287--291, 1966. http://dx.doi.org/10.1002/pol.1966.110040411
  10. R. Prabhakar and J. R. Prakash. Multiplicative separation of the influences of excluded volume, hydrodynamic interactions and finite extensibility on the rheological properties of dilute polymer solutions. J. Non-Newtonian Fluid Mech., 116(2-3):163--182, 2004. http://dx.doi.org/10.1016/S0377-0257(03)00155-1
  11. J. R. Prakash and H. C. {O}ttinger. Universal viscometric functions for dilute polymer solutions. J. Non-Newtonian Fluid Mech., 71:245--272, 1997. http://dx.doi.org/10.1016/S0377-0257(97)00012-8
  12. L. E. Wedgewood and H. C. {O}ttinger. A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. {II}. {S}hear flows. J. Non-Newtonian Fluid Mech., 27:245--264, 1988. http://dx.doi.org/10.1016/0377-0257(88)85016-X
  13. W. Zylka. Gaussian approximation and {B}rownian dynamics simulations for {R}ouse chains with hydrodynamic interaction undergoing simple shear flow. J. Chem. Phys., 94(6):4628--4636, 1991. http://dx.doi.org/10.1063/1.460591