Moving boundary shallow water flow above parabolic bottom topography

Joe Sampson, Alan Easton, Manmohan Singh

Abstract


Exact solutions of the two dimensional nonlinear shallow water wave equations for flow involving linear bottom friction and with no forcing are found for flow above parabolic bottom topography. These solutions also involve moving shorelines. The motion decays over time. In the solution of the three simultaneous nonlinear partial differential shallow water wave equations it is assumed that the velocity is a function of time only and along one axis. This assumption reduces the three simultaneous nonlinear partial differential equations to two simultaneous linear ordinary differential equations . The solutions found are useful for testing numerical solutions of the nonlinear shallow water wave equations which include bottom friction and whose flow involves moving shorelines.

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v47i0.1050



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.