Monotone alternating direction implicit method for nonlinear integro-parabolic equations

Authors

  • Igor Boglaev Massey University

DOI:

https://doi.org/10.21914/anziamj.v59i0.12633

Keywords:

integro-parabolic problems, alternating direction implicit (ADI) scheme, monotone iterative ADI method

Abstract

The paper deals with numerical solving nonlinear integro-parabolic problems based on an alternating direction implicit (ADI) scheme. A monotone iterative ADI method is constructed. An analysis of convergence of the monotone iterative ADI method is given. References
  • I. Boglaev, Monotone alternating direction implicit scheme for nonlinear parabolic problems. BIT Numerical Mathematics, 55, 2015, 647-676. doi:10.1007/s10543-014-0529-6
  • J. Douglas, H. H. Rachford, On the numerical solution of heat condition problems in two and three variables. Trans. Amer. Math. Soc., 82, 1956, 421–439.
  • G. I. Marchuk, Splitting and alternating direction methods, Handbook of Numerical Analysis, 1, 197–462. (Eds P. Ciarlet, J. Lions). North-Holland, Amsterdam, 1990.
  • R. McLachlan, G. Quispel, Splittings methods. Acta Numer., 11, 2002, 341–434. doi:10.1017/S0962492902000053
  • C. V. Pao, Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992.
  • A. Samarskii, The Theory of Difference Schemes. Marcel Dekker, New York–Basel, 2001.
  • I. H. Sloan, V. Thomee, Time distretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal., 23, 1986, 1052–1061. doi:10.1137/0723073
  • A. H. Stroud, Approximate Calculation of Multiple Integrals. Prentice–Hall, Englewood Cliffs, NJ, 1971.

Author Biography

Igor Boglaev, Massey University

Institute of Fundamental Sciences, Palmerston North

Published

2018-05-15

Issue

Section

Proceedings Engineering Mathematics and Applications Conference