Computational Modelling of Cardiac Trabecula Mechanics

Authors

  • Alison Schroeder University of Auckland
  • Thiranja P Babarenda Gamage University of Auckland
  • Vicky Wang University of Auckland
  • Denis S Loiselle University of Auckland
  • Poul M F Nielsen University of Auckland
  • David P Nickerson University of Auckland
  • Ming Cheuk University of Auckland
  • Andrew J Taberner University of Auckland
  • Martyn P Nash University of Auckland
  • Kenneth Tran University of Auckland

DOI:

https://doi.org/10.21914/anziamj.v59i0.12682

Abstract

Cardiac trabeculae are thin strips of muscle within the ventricles that can be readily excised and used to investigate contractile mechanics of cardiac muscle. Recently, the Auckland Bioengineering Institute has developed a novel cardiac myometer that simultaneously measures force, length and shape of actively contracting isolated cardiac trabeculae. Here we have developed a muscle-specific computational model based on optical coherence tomography geometric surface data that replicates passive mechanics of trabecula. We hypothesised that the muscle's surface geometry data, in addition to force-length data, would improve the fit between the model simulated mechanics and the experimental data. The trabecula model was optimised using two different objective functions (muscle length or shape) driven by a pressure boundary condition. For both objective functions, there was a region of optimal parameters the optimiser tended towards but, due to the coupling between parameters, the ability to find the true optimal parameters was hindered. Due to the limitations of the data, we found that the addition of surface data did not improve parameter estimation and that using only the force-length data provided sufficient information to produce an optimal fit. References
  • A. Anderson. The Cardiac Myometer: Measuring Matters of the Heart. PhD thesis, University of Auckland, 2016.
  • K. F. Augenstein, Brett R. Cowan, Ian J. LeGrice, Poul M. F. Nielsen, and Alistair A. Young. Method and apparatus for soft tissue material parameter estimation using tissue tagged Magnetic Resonance Imaging. Journal of Biomechanical Engineering, 127(1):148–157, February 2005.
  • C. Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F. Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, Sebastian Krittian, David Ladd, Caton Little, Kumar Mithraratne, Martyn Nash, David Nickerson, Poul Nielsen, Oyvind Nordbo, Stig Omholt, Ali Pashaei, David Paterson, Vijayaraghavan Rajagopal, Adam Reeve, Oliver Rohrle, Soroush Safaei, Rafael Sebastian, Martin Steghofer, Tim Wu, Ting Yu, Heye Zhang, and Peter Hunter. OpenCMISS: A multi-physics and multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology, 107(1):32–47, October 2011. doi:http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.015
  • M. L. Cheuk, A. J. Anderson, J. C. Han, N. Lippok, F. Vanholsbeeck, B. P. Ruddy, D. S. Loiselle, P. M. F. Nielsen, and A. J. Taberner. Four-Dimensional Imaging of Cardiac Trabeculae Contracting In Vitro Using Gated OCT. IEEE Transactions on Biomedical Engineering, 64(1):218–224, January 2017. doi:http://dx.doi.org/10.1109/TBME.2016.2553154
  • M. L. Cheuk, N. Lippok, A. W. Dixon, B. P. Ruddy, F. Vanholsbeeck, P. M. F. Nielsen, and A. J. Taberner. Optical coherence tomography imaging of cardiac trabeculae. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 182–185, August 2014. doi:http://dx.doi.org/10.1109/EMBC.2014.6943559
  • J. M Guccione, Andrew D McCulloch, and LK Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng, 113(1):42–55, 1991.
  • J. C. Han, Andrew J. Taberner, Robert S. Kirton, Poul M. Nielsen, Nicholas P. Smith, and Denis S. Loiselle. A unique micromechanocalorimeter for simultaneous measurement of heat rate and force production of cardiac trabeculae carneae. Journal of Applied Physiology, 107(3):946–951, September 2009. doi:http://dx.doi.org/10.1152/japplphysiol.00549.2009
  • M. P. Nash and P. J. Hunter. Regional mechanics of the beating heart. In Cardiac Perfusion and Pumping Engineering, volume Volume 1 of Clinically-Oriented Biomedical Engineering, pages 83–127. WORLD SCIENTIFIC, July 2007. doi:http://dx.doi.org/10.1142/9789812775597_0004
  • J. H. Omens, D. A. MacKenna, and A. D. McCulloch. Measurement of strain and analysis of stress in resting rat left ventricular myocardium. Journal of Biomechanics, 26(6):665–676, June 1993. doi:http://dx.doi.org/10.1016/0021-9290(93)90030-I
  • V. Y. Wang, H. I. Lam, Daniel B. Ennis, Brett R. Cowan, Alistair A. Young, and Martyn P. Nash. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Medical Image Analysis, 13(5):773–784, October 2009. doi:http://dx.doi.org/10.1016/j.media.2009.07.006

Author Biographies

Alison Schroeder, University of Auckland

Auckland Bioengineering Institute

Thiranja P Babarenda Gamage, University of Auckland

Auckland Bioengineering Institute

Vicky Wang, University of Auckland

Auckland Bioengineering Institute

Denis S Loiselle, University of Auckland

Auckland Bioengineering Institute and Department of Physiology

Poul M F Nielsen, University of Auckland

Auckland Bioengineering Institute

David P Nickerson, University of Auckland

Auckland Bioengineering Institute

Ming Cheuk, University of Auckland

Auckland Bioengineering Institute

Andrew J Taberner, University of Auckland

Auckland Bioengineering Institute

Martyn P Nash, University of Auckland

Auckland Bioengineering Institute

Kenneth Tran, University of Auckland

Auckland Bioengineering Institute

Published

2018-04-25

Issue

Section

Proceedings Engineering Mathematics and Applications Conference