Sampling from Gaussian Markov random fields conditioned on linear constraints

Daniel Peter Simpson, Ian W. Turner, A. N. Pettitt

Abstract


Gaussian Markov random fields (GMRFs) are important modeling tools in statistics. They are often utilised to model spatially structured uncertainty, seasonal variation and other trends in the data. These last two examples of GMRFs are part of a larger class of GMRFs conditioned on linear constraints. Performing Monte Carlo Markov Chain inference on these models requires a large number of samples from GMRFs conditioned on linear constraints. Therefore it is vital to have fast and efficient methods for performing these samples. This article presents three Krylov subspace methods for sampling from a GMRF conditioned on linear constraints based on solving a Karush--Kuhn--Tucker, or saddle point, system.

References
  • H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, 2005. USA.
  • H. Rue. {Fast Sampling of {G}aussian {M}arkov Random Fields}. J. R. Statist. Soc. B, 63:325--338, 2001. doi:10.1111/1467-9868.00288
  • N. Cressie. Reply to {Wahba}. The American Statistician, 44(3):256--258, 1990.
  • M. Benzi, G. Golub, and J. Liesen. Numerical solutions of saddle point problems. Acta Numerica, 14:1--137, 2005. doi:10.1017/S0962492904000212
  • D. P. Simpson, I. W. Turner, and A. N. Pettitt. Fast sampling from Gaussian Markov random field using Krylov subspace approaches, Scandinavian Journal of Statistics, Submitted, 2008.
  • Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, 1993.
  • C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numerical Analysis, 12:617--629, 1975. doi:10.1137/0712047
  • K. Burrage and J. Erhel. On the performance of various adaptive preconditioned {GMRES} strategies. Numerical Linear Algebra with Applications, 5(2):101--121, 1998. doi:0.1002/(SICI)1099-1506(199803/04)5:2<101::AID-NLA127>3.0.CO;2-1
  • A. N. Pettitt, I. S. Weir, and A. G. Hart. A conditional autoregressive {Gaussian} process for irregularly spaced multivariate data with application to modelling large sets of binary data. Statistics and Computing, 12, 2002. doi:10.1023/A:1020792130229

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v48i0.131



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.