A spectral method to the stochastic Stokes equations on the sphere


  • Q. T. Le Gia School of Mathematics and Statistics University of New South Wales, Sydney NSW 2052
  • J. J. Peach School of Mathematics and Statistics University of New South Wales, Sydney NSW 2052




Stochastic Stokes equations, spectral method, unit sphere


We construct numerical solutions to the stochastic Stokes equations on the unit sphere with additive noise. By characterising the noise as a tangential vector field, the weak formulation is derived and a spectral method is used to obtain a numerical solution. The theory is illustrated through a numerical experiment. References
  • P. Benner and C. Trautwein. Optimal distributed and tangential boundary control for the unsteady stochastic Stokes equations. Technical Report, 2018. URL https://arxiv.org/abs/1809.00911.
  • P. Chen, A. Quarteroni, and G. Rozza. Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal., 51(5):2700–2722, 2013. doi:10.1137/120884158.
  • A. Ciraudo, C. D. Negro, A. Herault, and A. Vicari. Advances in modelling methods for lava flow simulation. Commun. SIMAI Cong., 2:1–8, 2007. doi:10.1685/CSC06067.
  • W. Freeden and M. Schreiner. Spherical functions of mathematical geosciences. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer-Verlag, 2009. doi:10.1007/978-3-540-85112-7.
  • M. Ganesh and Q. T. L. Gia. A radial basis Galerkin method for spherical surface Stokes equation. ANZIAM J., 52:C56–C71, 2011. doi:10.21914/anziamj.v52i0.3921.
  • M. Ganesh, Q. T. L. Gia, and I. H. Sloan. A pseudospectral quadrature method for Navier–Stokes equations on rotating spheres. Math. Comput., 80:1397–1430, 2011. doi:10.1090/S0025-5718-2010-02440-8.
  • A. A. Il'in. The Navier–Stokes and Euler equations on two-dimensional manifolds. Math. USSR Sbornik, 69:559–579, 1991. doi:10.1070/sm1991v069n02abeh002116.
  • F. Narcowich, J. Ward, and G. Wright. Divergence-free RBFs on surfaces. J. Fourier Anal. Appl., 13:634–663, 2007. doi:10.1007/s00041-006-6903-2.
  • S. S. Sritharan. Optimal control of viscous flow. SIAM, 1998. doi:10.1137/1.9781611971415.
  • D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum theory of angular momentum. World Scientific, 2008. doi:10.1142/0270.





Proceedings Computational Techniques and Applications Conference