A spectral method to the stochastic Stokes equations on the sphere

Authors

  • Q. T. Le Gia School of Mathematics and Statistics University of New South Wales, Sydney NSW 2052
  • J. J. Peach School of Mathematics and Statistics University of New South Wales, Sydney NSW 2052

DOI:

https://doi.org/10.21914/anziamj.v60i0.13987

Keywords:

Stochastic Stokes equations, spectral method, unit sphere

Abstract

We construct numerical solutions to the stochastic Stokes equations on the unit sphere with additive noise. By characterising the noise as a tangential vector field, the weak formulation is derived and a spectral method is used to obtain a numerical solution. The theory is illustrated through a numerical experiment. References
  • P. Benner and C. Trautwein. Optimal distributed and tangential boundary control for the unsteady stochastic Stokes equations. Technical Report, 2018. URL https://arxiv.org/abs/1809.00911.
  • P. Chen, A. Quarteroni, and G. Rozza. Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal., 51(5):2700–2722, 2013. doi:10.1137/120884158.
  • A. Ciraudo, C. D. Negro, A. Herault, and A. Vicari. Advances in modelling methods for lava flow simulation. Commun. SIMAI Cong., 2:1–8, 2007. doi:10.1685/CSC06067.
  • W. Freeden and M. Schreiner. Spherical functions of mathematical geosciences. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer-Verlag, 2009. doi:10.1007/978-3-540-85112-7.
  • M. Ganesh and Q. T. L. Gia. A radial basis Galerkin method for spherical surface Stokes equation. ANZIAM J., 52:C56–C71, 2011. doi:10.21914/anziamj.v52i0.3921.
  • M. Ganesh, Q. T. L. Gia, and I. H. Sloan. A pseudospectral quadrature method for Navier–Stokes equations on rotating spheres. Math. Comput., 80:1397–1430, 2011. doi:10.1090/S0025-5718-2010-02440-8.
  • A. A. Il'in. The Navier–Stokes and Euler equations on two-dimensional manifolds. Math. USSR Sbornik, 69:559–579, 1991. doi:10.1070/sm1991v069n02abeh002116.
  • F. Narcowich, J. Ward, and G. Wright. Divergence-free RBFs on surfaces. J. Fourier Anal. Appl., 13:634–663, 2007. doi:10.1007/s00041-006-6903-2.
  • S. S. Sritharan. Optimal control of viscous flow. SIAM, 1998. doi:10.1137/1.9781611971415.
  • D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum theory of angular momentum. World Scientific, 2008. doi:10.1142/0270.

Published

2019-06-26

Issue

Section

Proceedings Computational Techniques and Applications Conference