A mixed finite element method based on a biorthogonal system for nearly incompressible elastic problems

Authors

  • Bishnu Prasad Lamichhane

DOI:

https://doi.org/10.21914/anziamj.v50i0.1422

Abstract

A Petrov--Galerkin scheme in a saddle point formulation gives rise to a non-symmetric saddle point problem. This article considers a non-symmetric saddle point problem with a penalty parameter. A mixed finite element method for linear elasticity based on a Petrov--Galerkin formulation is then analyzed within the framework of the non-symmetric saddle point problem with penalty. Working with a biorthogonal system to discretize the pressure equation, we obtain a robust and efficient numerical scheme for nearly incompressible linear elasticity using linear finite elements. A numerical example demonstrates the robustness of the approach. These results are useful to analyze a Petrov--Galerkin scheme in a saddle point problem. References
  • Babuska, I. and Suri, M. (1992). Locking effects in the finite element approximation of elasticity problems. Numerische Mathematik, 62, 439--463. doi:10.1007/BF01396238
  • Babuska, I. and Suri, M. (1992). On locking and robustness in the finite element method. SIAM Journal on Numerical Analysis, 29, 1261--1293. doi:10.1137/0729075
  • Brezzi, F. and Fortin, M. (1991). Mixed and hybrid finite element methods. Springer--Verlag, New York.
  • Braess, D. (1996). Stability of saddle point problems with penalty. Mathematical Modelling and Numerical Analysis, 30, 731--742.
  • Lamichhane, B. (2008). Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity. IMA Journal of Numerical Analysis. doi:10.1093/imanum/drn013
  • Nicolaides, R. (1982). Existence, uniqueness and approximation for generalized saddle point problems. SIAM Journal on Numerical Analysis, 19, 349--357. doi:10.1137/0719021
  • Bernardi, C., Canuto, C. and Maday, Y. (1988). Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM Journal on Numerical Analysis, 25, 1237--1271. doi:10.1137/0725070
  • Ciarlet, P. J., Huang, J. and Zou, J. (2003). Some observations on generalized saddle-point problems. SIAM Journal on Matrix Analysis and Applications, 25, 224--236. doi:10.1137/S0895479802410827
  • Arnold, D. N., Brezzi, F. and Fortin, M. (1984). A stable finite element for the Stokes equations. Calcolo, 21, 337--344. doi:10.1007/BF02576171
  • Braess, D. (2001). Finite Elements. Theory, fast solver, and applications in solid mechanics. Cambridge University Press, Second Edition.
  • Brenner, S. (1993). A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity. SIAM Journal on Numerical Analysis, 30, 116--135. doi:10.1137/0730006

Published

2008-11-17

Issue

Section

Proceedings Computational Techniques and Applications Conference