Approximating the solution of the chemical master equation by aggregation

Authors

  • Markus Hegland

DOI:

https://doi.org/10.21914/anziamj.v50i0.1426

Abstract

The chemical master equation is a continuous time discrete space Markov model of chemical reactions. The chemical master equation is derived mathematically and it is shown that the corresponding initial value problem has a unique solution. Conditions are given under which this solution is a probability distribution. We present finite state and aggregation-disaggregation approximations and provide error bounds for the case of piecewise constant disaggregation. The aggregation-disaggregation approximation allows the solution of the chemical master equation for larger state spaces and is also an important tool for the solution of multidimensional problems. References
  • Adam Arkin, John Ross, and Harley H. McAdams. {Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Ph age lambda-Infected Escherichia coli Cells}. Genetics, 149(4):1633--1648, 1998. http://www.genetics.org/cgi/content/abstract/149/4/1633
  • P. Deuflhard, W. Huisinga, T. Jahnke, and M. Wulkow. Adaptive discrete Galerkin methods applied to the chemical master equation. Technical Report ZIB-Report 07-04, Konrad--Zuse Zentrum fuer Informationstechnik Berlin, 2007. http://www.zib.de/Publications/Reports/ZR-07-04.pdf
  • Stefan Engblom. Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput., 180(2):498--515, 2006. doi:10.1016/j.amc.2005.12.032
  • Lars Ferm and Per Loetstedt. Numerical method for coupling the macro and meso scales in stochastic chemical kinetics. BIT Numerical Mathematics, 47:735--762, 2007. doi:10.1007/s10543-007-0150-z
  • Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):2340--2361, December 1977.
  • Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara, and Hilary Booth. A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205(2):708--724, 2007. doi:10.1016/j.cam.2006.02.053
  • Leo Huber and Markus Hegland. Dimension adaptive sparse grids for the chemical master equations. submitted, 2008.
  • B. Munsky and M. Khammash. The finite state projection algorithm for the solution of the chemical master equation. The Journal of Chemical Physics, 124:044104--1--044104--1, 2006. doi:10.1063/1.2145882
  • Roger B. Sidje. EXPOKIT: Software package for computing matrix exponentials. ACM Transactions on Mathematical Software, 24(1):130--156, March 1998. doi:10.1145/285861.285868
  • T. Tian and K. Burrage. Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage-$\lambda $. Journal of Theoretical Biology, 227:229--237, 2004. doi:10.1016/j.jtbi.2003.11.003
  • N. G. van Kampen. Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam, the Netherlands, 1981.

Published

2008-11-20

Issue

Section

Proceedings Computational Techniques and Applications Conference