The total quasi-steady state assumption: its justification by singular perturbation theory and its application to the chemical master equation

Authors

  • Chin Foon Khoo
  • Markus Hegland

DOI:

https://doi.org/10.21914/anziamj.v50i0.1437

Abstract

Deterministic models of enzymatic reactions based on the quasi-steady state assumption (QSSA) and total quasi-steady state assumption (tQSSA) have been used successfully in the past. This is surprising as the QSSA and tQSSA can neither be verified mathematically nor by experiment for most cases of interest. Here, we discuss an approach using singular perturbation theory to justify the approximation obtained by tQSSA. In addition, we extend the application of tQSSA to the stochastic model to deal with stiff differential equations originating from the chemical master equation. References
  • S. Cha and Cha C. M. Kinetics of cyclic enzyme systems. Molecular Pharmacology, 1:178--189, 1965. http://molpharm.aspetjournals.org/cgi/reprint/1/2/178.
  • J. Goutsias. Quasi equilibrium approximation of fast reaction kinetics in stochastic biochemical systems. Journal of Chemical Physics, 122:184102--1--15, 2005. doi:10.1063/1.1889434.
  • L. Michaelis and M. Menten. Die kinetik der invertinwirkung. Biochemische Zeitschrift, 49:333--369, 1913.
  • J. M. Nelson and H. W. Larson. Kinetics of invertase action. The Journal of Biological Chemistry, 73(11):223--236, 1927. http://www.jbc.org/cgi/reprint/73/1/223.
  • L. A. Segel. On the validity of the steady state assumption of enzyme kinetics. Bulletin of Mathematical Biology, 50:579--593, 1988. doi:10.1007/BF02460092.
  • A. N. Tikhnov. Systems of differential equations containing a small parameter multiplying the derivatives. Mat. Sb., 31:575--586, 1952.
  • G. A. Baker and P.R. Graves-Morris. Pade Approximants (Encyclopedia of Mathematics and its Application). Cambridge University Press, 1984.
  • J. A. M. Borghans, R. J. d. Boer, and L. A. Segel. Extending the quasi-steady state approximation by changing variables. Bulletin of Mathematical Biology, 58:43--63, 1996. doi:10.1007/BF02458281.
  • G. E. Briggs and J. B. S. Haldane. A note on the kinetics of enzyme action. The Biochemical Journal, 19(2):338--339, 1925. http://www.biochemj.org/bj/019/0338/bj0190338_browse.htm.
  • Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scale stochastic simulation algorithm. The Journal of Chemical Physics, 122:014116--1--18, 2005. doi:10.1063/1.1824902.

Published

2008-11-23

Issue

Section

Proceedings Computational Techniques and Applications Conference