Efficient coupling of finite elements and boundary elements---adaptive procedures and preconditioners

Ernst Peter Stephan

Abstract


The article is split into four parts. First, we present the symmetric finite element/boundary element-coupling method. Second, we address the choices of appropriate preconditioners for the resulting discrete system when h- and p-versions are performed. Third, we discuss contact problems which are reduced to variational inequalities. Finally, we show the practical applicability of the finite element/boundary element-coupling method by applying it to a metal turning process. Here the viscoplastic work piece is modelled with finite elements and the linear elastic work tool (milling cutter) is modelled with boundary elements. This leads to an efficient and fast numerical method to simulate the metal turning process and to predict failure of the thermal shrink fit which holds the milling cutter.

References
  • A. Chernov, M. Maischak and E. P. Stephan. A priori error estimates for hp penalty bem for contact problems in elasticity. Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3871--3880. doi:10.1016/j.cma.2006.10.044
  • A. Chernov, M. Maischak and E. P. Stephan. hp-mortar boundary element methodfor two-body contact problems with friction. Math. Methods Appl. Sci., published online, doi:10.1002/mma.1005
  • A. Chernov and E. P. Stephan. Adaptive bem for contact problems with friction. IUTAM Symposium on Computational Methods in Contact Mechanics, 113--122, IUTAM Bookser., 3, Springer, Dordrecht, 2007.
  • M. Costabel and E. P. Stephan. Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27 (1990), no. 5, 1212--1226.
  • B. Denkena, E. P. Stephan, M. Maischak, D. Heinisch, M. Andres. Numerical computation methods for process-oriented structures in metal chipping. Proceedings of 1st International Conference on Process Machine Interaction (PMI). (2008), 247--258.
  • B. Guo and E. P. Stephan. The hp-version of the coupling of finite element and boundary element methods for transmission problems in polyhedral domains. Numer. Math. 80 (1998), no. 1, 87--107.
  • E. W. Hart. Constitutive relations for the nonelastic deformation of metals, Journal of Enginering Materials and Technology. 98 (1976), 193--202.
  • N. Heuer, F. Leydecker and E. P. Stephan. An iterative substructuring method for the hp-version of the bem on quasi-uniform triangular meshes, Num.Meth.PDEs. 23 (2007), 879--903. doi:10.1002/num.20259
  • N. Heuer, M. Maischak and E. P. Stephan. Preconditioned minimum residual iteration for the hp-version of the coupled fem/bem with quasi-uniform meshes. Numer. Linear Algebra Appl. 6 (1999), no. 6, 435--456.
  • N. Heuer and E. P. Stephan. An additive Schwarz method for the h-p version of the boundary element method for hypersingular integral equations in $R^3$, IMA J. Numer. Analysis. 21 (2001), 265--283. doi:10.1093/imanum/21.1.265
  • I. Babuska, A. Craig, J. Mandel and J. Pitkaeranta. Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991), 624--661.
  • N. Heuer, E. P. Stephan and T. Tran. Multilevel additive Schwarz method for the hp-version of the Galerkin boundary element method. Math.Comp.. 67 (1998), no. 222, 501--518.
  • M. Maischak and E. P. Stephan. The hp-version of the boundary element method in $R^3$. The basic approximation results. Math. Meth. Appl. Sci. 20 (1997), 461--476.
  • M. Maischak and E. P. Stephan. Adaptive hp-versions of boundary element methods for elastic contact problems, Comp.Mech. 39 (2007), 597--607. doi:10.1007/s00466-006-0109-y
  • S. Mukherjee and A. Chandra. Boundary element formulations for large strain-large deformation problems of plasticity and viscoplasticity, Developments in Boundary Element Methods, 1984, editors P. K. Banerjee and S. Mukherjee, 27--58.
  • P. Mund and E. P. Stephan. Adaptive coupling and fast solution of fem-bem equations for parabolic-elliptic interface problems. Math. Methods Appl. Sci. 20 (1997), no. 5, 403--423.
  • P. Mund and E. P. Stephan. An adaptive two-level method for the coupling of nonlinear fem-bem equations. SIAM J. Numer. Anal. 36 (1999), no. 4, 1001--1021.
  • P. Seshaiyer and M. Suri. Uniform hp convergence results for the mortar finite element method. Math. Comp. 69 (2000), no. 230, 521--546.
  • E. P. Stephan. Coupling of finite elements and boundary elements for some nonlinear interface problems, Comput. Methods Appl. Mech. Engrg. 101 (1992), no. 1--3, 61--72.
  • E. P. Stephan. The hp-boundary element method for solving $2$- and 3-dimensional problems. Comput. Methods Appl. Mech. Engrg. 133 (1996), no. 3--4, 183--208.
  • E. P. Stephan. Coupling of Boundary Element Methods and Finite Element Methods, Encyclopedia of Computational Mechanics. Vol. 1, Chapter 13. 2004, John Wiley and Sons. ISBN: 0-470-84699-2.
  • I. Babuska, B. Q. Guo and E. P. Stephan. The hp-version of the boundary element method with geometric mesh on polygonal domains. Computer Methods in Applied Mechanics and Engineering 80 (1990), 319--325.
  • E. P. Stephan, S. Geyn, M. Maischak and M. Andres. A boundary element / finite element procedure for metal chipping. CMM-2007, June 19--22, 2007, \unhbox \voidb@x \setbox \z@ \hbox {L}\hbox to\wd \z@ {\hss \@xxxii L}odz--Spala, Poland.
  • T. Tran and E. P. Stephan. Additive Schwarz methods for the h-version boundary element method. Applicable Analysis. 60 (1996), no. 1--2, 63--84.
  • T. Tran and E. P. Stephan. Additive {Schwarz} algorithms for the p-version of the Galerkin boundary element method. Numer. Math.. 85 (2000), no. 3, 433--468.
  • T. Tran and E. P. Stephan. An overlapping additive Schwarz preconditioner for boundary element approximations to the Laplace screen and Lame crack problems, J. Numer. Math. 12 (2004), 311--330. doi:10.1515/1569395042571265
  • P. Wriggers. Computational Contact Mechanics, 2002, John Wiley and Sons.
  • E. Zeidler. Nonlinear Functional Analysis and its Applications. IV. Springer, New York, 1988.
  • C. Carstensen and E. P. Stephan. Adaptive coupling of boundary elements and finite elements. RAIRO Modl. Math. Anal. Numer. 29 (1995), no. 7, 779--817.
  • A. Chernov. Nonconforming boundary elements and finite elements for interface and contact problems with friction; hp-version for mortar, penalty and Nitsche's methods, PhD Thesis, Universitaet Hannover, 2007.

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v50i0.1495



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.