Stochastic modelling of chlamydial infections

Authors

DOI:

https://doi.org/10.21914/anziamj.v61i0.15159

Abstract

Chlamydia trachomatis is a bacterial pathogen that can cause serious reproductive harm. We describe a class of stochastic branching processes and their application in modelling the growth of an infection by Chlamydia. Using simulations we show that the model can reproduce biological phenomena of interest, and we show the variability in outcomes of infections under the same parameter conditions. We further speculate how this model might be used to explain long-term adverse reproductive sequelae.

References
  • Y. M. AbdelRahman and R. J. Belland. The chlamydial developmental cycle. FEMS Microbio. Rev., 29(5):949–959, 2005. doi:10.1016/j.femsre.2005.03.002.
  • T. E. Harris. Branching processes. Ann. Math. Stat., 19(4):474–494, 12 1948. doi:10.1214/aoms/1177730146.
  • C. Jacob. Branching processes: Their role in epidemiology. Int. J. Env. Res. Public Health, 7(3):1186–1204, 2019. doi:10.3390/ijerph7031204.
  • N. Low, M. Egger, J. A. C. Sterne, R. M. Harbord, F. Ibrahim, B. Lindblom, and B. Herrmann. Incidence of severe reproductive tract complications associated with diagnosed genital chlamydial infection: The Uppsala women's cohort study. Sexually Trans. Infect., 82(3):212–218, 2006. doi:10.1136/sti.2005.017186.
  • D. Mallet, M. Bagher-Oskouei, A. Farr, D. Simpson, and K. Sutton. A mathematical model of chlamydial infection incorporating movement of chlamydial particles. Bull. Math. Bio., 75:2257–2270, 10 2013. doi:10.1007/s11538-013-9891-9.
  • H. K. Maxion, W. Liu, M.-H. Chang, and K. A. Kelly. The infecting dose of chlamydia muridarum modulates the innate immune response and ascending infection. Infect. Immun., 72(11):6330–6340, 2004. doi:10.1128/IAI.72.11.6330-6340.2004.
  • S. Menon, P. Timms, J. A. Allan, K. Alexander, L. Rombauts, P. Horner, M. Keltz, J. Hocking, and W. M. Huston. Human and pathogen factors associated with chlamydia trachomatis-related infertility in women. Clinic. Microbio. Rev., 28(4):969–985, 2015. doi:10.1128/CMR.00035-15.
  • D. P. Wilson. Mathematical modelling of chlamydia. In J. Crawford and A. J. Roberts, editors, Proc. of 11th Computational Techniques and Applications Conference CTAC-2003, ANZIAM J., volume 45, pages C201–C214, 2004. doi:10.21914/anziamj.v45i0.883.
  • D. P. Wilson and D. L. S. McElwain. A model of neutralization of chlamydia trachomatis based on antibody and host cell aggregation on the elementary body surface. J. Theor. Bio., 226(3):321–330, 2004. doi:10.1016/j.jtbi.2003.09.010.
  • D. P. Wilson, P. Timms, and D. L. S. McElwain. A mathematical model for the investigation of the Th1 immune response to chlamydia trachomatis. Math. Biosci., 182(1):27–44, 2003. doi:10.1016/S0025-5564(02)00180-3.

Published

2020-07-06

Issue

Section

Proceedings Engineering Mathematics and Applications Conference