Bayesian Inference on the Keller–Segel Model

Authors

DOI:

https://doi.org/10.21914/anziamj.v61i0.15185

Keywords:

Statistics, Parametric inference, Bayesian inference

Abstract

The Keller–Segel (KS) model is a system of partial differential equations that describe chemotaxis—how cells move in response to chemical stimulus. Simulated data in the form of cell counts are used to carry out Bayesian inference on the ks model. A Bayesian analysis on the ks model is performed on three sets of initial conditions. First, the KS model is solved numerically using a finite difference method and Bayesian inference is performed on parameters of the model such as the cell diffusion and chemical sensitivity. We investigate the predictive posterior distribution of future data and the convergence of the 95% credible interval of cell diffusion at different grid sizes using the three different initial conditions.

References

  • D. Balding and D. L. S. McElwain. A mathematical model of tumour-induced capillary growth. J. Theor. Biol., 114(1):53–73, 1985. doi:10.1016/S0022-5193(85)80255-1.
  • D. A. Brown and H. C. Berg. Temporal stimulation of chemotaxis in Escherichia coli. Proc. Nat. Acad. Sci., 71(4):1388–1392, 1974. doi:10.1073/pnas.71.4.1388.
  • H. Chisholm. The Encyclop\T1\ae dia britannica: a dictionary of arts, sciences, literature and general information, volume 6. Encyclopaedia Britannica Co., 1910.
  • F. W. Dahlquist, P. Lovely, and D. E. Koshland. Quantitative analysis of bacterial migration in chemotaxis. Nature New Biol., 236(65):120–123, 1972. doi:10.1038/newbio236120a0.
  • J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci., 5(1):65–80, 2010. URL https://projecteuclid.org/euclid.camcos/1513731992.
  • K. Gustafson and T. Abe. The third boundary condition–-was it Robin's? Math. Intell., 20(1):63–71, 1998. doi:10.1007/BF03024402.
  • L. Harvath and R. R. Aksamit. Oxidized n-formylmethionyl-leucyl-phenylalanine: Effect on the activation of human monocyte and neutrophil chemotaxis and superoxide production. J. Immun., 133(3):1471–1476, 1984. URL https://www.jimmunol.org/content/133/3/1471.
  • E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Bio., 26(3):399–415, 1970. doi:10.1016/0022-5193(70)90092-5.
  • R. Mesibov, G. W. Ordal, and J. Adler. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range: Weber law and related phenomena. J. Gen. Physiol., 62(2):203–223, 1973. doi:10.1085/jgp.62.2.203.
  • J. A. Sherratt, E. H. Sage, and J. D. Murray. Chemical control of eukaryotic cell movement: A new model. J. Theor. Biol., 162(1):23–40, 1993. doi:10.1006/jtbi.1993.1074.
  • R. T. Tranquillo, S. H. Zigmond, and D. A. Lauffenburger. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay. Cell Motil. Cytoskel., 11(1):1–15, 1988. doi:10.1002/cm.970110102.
  • A. W. van der Vaart. Asymptotic Statistics, volume 3. Cambridge University Press, 2000. doi:10.1017/CBO9780511802256.

Author Biography

Thomas Goodwin, University of Technology, Sydney

PhD Student

Published

2020-08-10

Issue

Section

Proceedings Engineering Mathematics and Applications Conference