A gradient recovery approach for nonconforming finite element methods with boundary modification

Gradient Recovery Approach for Non-Conforming Finite Element

Authors

  • Jordan Shaw-Carmody University of Newcastle

DOI:

https://doi.org/10.21914/anziamj.v62.16032

Keywords:

Gradient Recovery, Biorthogonal projection, Boundary modification, non-conforming element

Abstract

We use orthogonal and biorthogonal projections to post-process the gradient of the finite element solution produced by a non-conforming finite element approach. This leads to a better approximation property of the recovered gradient. We use an L2-projection, where the trial and test spaces are different but form a biorthogonal system. This leads to an efficient numerical approach. We also modify our projection by applying the boundary modification method to obtain a higher order approximation on the boundary patch. Numerical examples are presented to demonstrate the efficiency and optimality of the approach.

References

  • R. E. Bank and J. Xu. Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41 (2003), pp. 2294–2312. doi: 10.1137/S003614290139874X
  • J. H. Bramble and A. H. Schatz. Higher order local accuracy by averaging in the finite element method. Math. Comput. 31 (1977), pp. 94–111. doi: 10.1090/S0025-5718-1977-0431744-9.
  • M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO 7.R3 (1973), pp. 33–75. doi: 10.1051/m2an/197307R300331
  • H. Guo and Z. Zhang. Gradient recovery for the Crouzeix–Raviart element. J. Sci. Comput. 64.2 (2015), pp. 456–476. doi: 10.1007/s10915-014-9939-5.
  • B.-O. Heimsund, X.-C. Tai, and J. Wang. Superconvergence for the gradient of finite element approximations by L2 projections. SIAM J. Numer. Anal. 40.4 (2002), pp. 1263–1280. doi: 10.1137/S003614290037410X
  • Y. Huang and N. Yi. The superconvergent cluster recovery method. J. Sci. Comput. 44 (2010), pp. 301–322. doi: 10.1007/s10915-010-9379-9
  • M. Ilyas, B. P. Lamichhane, and M. H. Meylan. A gradient recovery method based on an oblique projection and boundary modification. Proceedings of the 18th Biennial Computational Techniques and Applications Conference, CTAC-2016. Ed. by J. Droniou, M. Page, and S. Clarke. Vol. 58. ANZIAM J. 2017, pp. C34–C45. doi: 10.21914/anziamj.v58i0.11730
  • M. Kˇríˇzek and P. Neittaanmäki. Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984), pp. 105–116. doi: 10.1007/BF01379664
  • B. P. Lamichhane, R. P. Stevenson, and B. I. Wohlmuth. Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numer. Math. 102 (2005), pp. 93–121. doi: 10.1007/s00211-005-0636-z
  • A. Naga and Z. Zhang. A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42.4 (2004), pp. 1780–1800. doi: 10.1137/S0036142903413002
  • R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Num. Meth. Part. Diff. Eq. 8.2 (1992), pp. 97–111. doi: 10.1002/num.1690080202
  • Z. Zhang and A. Naga. A new finite element gradient recovery method: Superconvergence property. SIAM J. Sci. Comput. 26.4 (2005), pp. 1192–1213. doi: 10.1137/S1064827503402837
  • O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Num. Meth. Eng. 33 (1992), pp. 1331–1364. doi: 10.1002/nme.1620330702

Published

2022-02-07

Issue

Section

Proceedings Computational Techniques and Applications Conference