An efficient Bayesian neural network surrogate algorithm for shape detection

Authors

  • Ganesh Colorado School of Mines
  • Stuart Collin Hawkins
  • Nino Kordzakhia Macquarie University
  • Stefanie Unicomb Macquarie University

DOI:

https://doi.org/10.21914/anziamj.v62.16110

Keywords:

inverse shape problem, Bayesian, Neural Network, markov chain Monte Carlo

Abstract

We present an efficient Bayesian algorithm for identifying the shape of an object from noisy far field data. The data is obtained by illuminating the object with one or more incident waves. Bayes' theorem provides a framework to find a posterior distribution of the parameters that determine the shape of the scatterer. We compute the distribution using the Markov Chain Monte Carlo (MCMC) method with a Gibbs sampler. The principal novelty of this work is to replace the forward far-field-ansatz wave model (in an unbounded region) in the MCMC sampling with a neural-network-based surrogate that is hundreds of times faster to evaluate. We demonstrate the accuracy and efficiency of our algorithm by constructing the distributions, medians and confidence intervals of non-convex shapes using a Gaussian random circle prior.

References

  • Y. Chen. Inverse scattering via Heisenberg’s uncertainty principle. Inv. Prob. 13 (1997), pp. 253–282. doi: 10.1088/0266-5611/13/2/005
  • D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory. 4th Edition. Vol. 93. Applied Mathematical Sciences. References C112 Springer, 2019. doi: 10.1007/978-3-030-30351-8
  • R. DeVore, B. Hanin, and G. Petrova. Neural Network Approximation. Acta Num. 30 (2021), pp. 327–444. doi: 10.1017/S0962492921000052
  • M. Ganesh and S. C. Hawkins. A reduced-order-model Bayesian obstacle detection algorithm. 2018 MATRIX Annals. Ed. by J. de Gier et al. Springer, 2020, pp. 17–27. doi: 10.1007/978-3-030-38230-8_2
  • M. Ganesh and S. C. Hawkins. Algorithm 975: TMATROM—A T-matrix reduced order model software. ACM Trans. Math. Softw. 44.9 (2017), pp. 1–18. doi: 10.1145/3054945
  • M. Ganesh and S. C. Hawkins. Scattering by stochastic boundaries: hybrid low- and high-order quantification algorithms. ANZIAM J. 56 (2016), pp. C312–C338. doi: 10.21914/anziamj.v56i0.9313
  • M. Ganesh, S. C. Hawkins, and D. Volkov. An efficient algorithm for a class of stochastic forward and inverse Maxwell models in R3. J. Comput. Phys. 398 (2019), p. 108881. doi: 10.1016/j.jcp.2019.108881
  • L. Lamberg, K. Muinonen, J. Ylönen, and K. Lumme. Spectral estimation of Gaussian random circles and spheres. J. Comput. Appl. Math. 136 (2001), pp. 109–121. doi: 10.1016/S0377-0427(00)00578-1
  • T. Nousiainen and G. M. McFarquhar. Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61 (2004), pp. 2229–2248. doi: 10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2
  • A. Palafox, M. A. Capistrán, and J. A. Christen. Point cloud-based scatterer approximation and affine invariant sampling in the inverse scattering problem. Math. Meth. Appl. Sci. 40 (2017), pp. 3393–3403. doi: 10.1002/mma.4056
  • M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378 (2019), pp. 686–707. doi: 10.1016/j.jcp.2018.10.045
  • A. C. Stuart. Inverse problems: A Bayesian perspective. Acta Numer. 19 (2010), pp. 451–559. doi: 10.1017/S0962492910000061
  • B. Veihelmann, T. Nousiainen, M. Kahnert, and W. J. van der Zande. Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry. J. Quant. Spectro. Rad. Trans. 100 (2006), pp. 393–405. doi: 10.1016/j.jqsrt.2005.11.053

Published

2022-01-12

Issue

Section

Proceedings Computational Techniques and Applications Conference