Weak imposition of boundary conditions for the gauge formulation of the incompressible Navier–Stokes equations

Authors

DOI:

https://doi.org/10.21914/anziamj.v62.16117

Keywords:

projection method, gauge method, Navier-Stokes equation

Abstract

The projection method was first introduced by Chorin [Bull. AMS 73 (1967), pp. 928–931] and Temam [Arch. Rat. Mech. Anal. 33 (1969), pp. 377–385] as a computationally efficient numerical method to solve the incompressible Navier–Stokes equations. Despite its success in decoupling the computations of velocity and pressure, it suffers from inaccurate numerical boundary layers. As an effort to resolve this inaccuracy, E and Liu [Int. J. Numer. Meth. Fluids 34 (2000), pp. 701–710] proposed the gauge method, which is a reformulation of the Navier–Stokes equations in terms of an auxiliary vector field and a gauge variable. This method utilizes the freedom of choosing a boundary condition for the gauge variable to reduce the numerical coupling between the considered variables. Nevertheless, the computational implementation of the boundary conditions for the auxiliary vector field is difficult in the context of finite elements since they involve either the normal or tangential derivative of the gauge variable. In order to circumvent this issue, we propose a weak formulation of the boundary conditions based on the symmetric Nitsche method. Computational results are presented to illustrate the accuracy of the proposed method.

References

  • J. H. Bramble, J. E. Pasciak, and A. T. Vassilev. Analysis of the Iinexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34.3 (1997), pp. 1072–1092. doi: 10.1137/S0036142994273343
  • D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168.2 (2001), pp. 464–499. doi: 10.1006/jcph.2001.6715
  • A. J. Chorin. The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Amer. Math. Soc. 73 (1967), pp. 928–931. doi: 10.1090/s0002-9904-1967-11853-6 on p. C100).
  • W. E and J.-G. Liu. Gauge finite element method for incompressible flows. Int. J. Numer. Meth. Fluids 34 (2000), pp. 701–710. doi: 10.1002/1097-0363(20001230)34:8<701::AID-FLD76>3.0.CO;2-B
  • W. E and J.-G. Liu. Projection method I: Convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995), pp. 1017–1057. doi: 10.1137/0732047
  • W. Ef and J.-G. Liu. Gauge method for viscous incompressible flows. Commun. Math. Sci. 1.2 (2003), pp. 317–332. doi: 10.4310/CMS.2003.v1.n2.a6
  • A. Ern and J.-L. Guermond. Theory and practice of finite elements. Vol. 159. Applied mathematical sciences. Springer, 2004. doi: 10.1007/978-1-4757-4355-5
  • P. Hansbo. Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28.2 (2005), pp. 183–206. doi: 10.1002/gamm.201490018
  • W. Layton, N. Mays, M. Neda, and C. Trenchea. Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier–Stokes equations. Math. Model. Numer. Anal. 48.3 (2014), pp. 765–793. doi: 10.1051/m2an/2013120
  • A. Logg, K.-A. Mardal, and G. Wells. Automated solution of differential equations by the finite element method: The FEniCS book. Vol. 84. Lecture notes in computational science and engineering. Springer, 2012. doi: 10.1007/978-3-642-23099-8
  • R. Mekhlouf, A. Baggag, and L. Remaki. Assessment of Nitsche’s method for Dirichlet boundary conditions treatment. J. Fluid Flow, Heat Mass Trans. 4.1 (2017), pp. 54–63. doi: 10.11159/jffhmt.2017.007
  • J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. Vol. 36. Springer. 1971, pp. 9–15. doi: 10.1007/BF02995904
  • R. H. Nochetto and J.-H. Pyo. The gauge-Uzawa finite element method. Part I: The Navier–Stokes equations. SIAM J. Numer. Anal. 43.3 (2005), pp. 1043–1068. doi: 10.1137/040609756
  • J.-H. Pyo. Error estimates for the second order semi-discrete stabilized gauge-Uzawa method for the Navier–Stokes equations. Int. J. Numer. Anal. Mod. 10.1 (2013). url: https://www.global-sci.org/intro/article_detail/ijnam/557.html
  • L. Ridgway Scott. Introduction to automated modeling with FEniCS. Computational Modeling Initiative, 2018. url: https://www.cminit.company/publications
  • R. Temam. Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (II). Arch. Rat. Mech. Anal. 33.5 (1969), pp. 377–385. doi: 10.1007/BF00247696
  • C. Wang and J.-G. Liu. Convergence of gauge method for incompressible flow. Math. Comput. 69 (2000), pp. 1385–1407. doi: 10.1090/S0025-5718-00-01248-5
  • K. Wiratama. A comparison of projection and gauge methods for numerical incompressible fluid dynamics. Masters thesis. Australian National University, Oct. 2019
  • H. Zhang. Application of projection methods to the numerical solution of the incompressible Navier Stokes equations. Honours thesis. Australian National University, Oct. 2014

Published

2022-02-07

Issue

Section

Proceedings Computational Techniques and Applications Conference