Uncertainty quantification for the Hokkaido Nansei-Oki tsunami using B-splines on adaptive sparse grids





Modeling uncertainties in the input parameters of computer simulations is an established way to account for inevitably limited knowledge. To overcome long run-times and high demand for computational resources, a surrogate model can replace the original simulation. We use spatially adaptive sparse grids for the creation of this surrogate model. Sparse grids are a discretization scheme designed to mitigate the curse of dimensionality, and spatial adaptivity further decreases the necessary number of expensive simulations. We combine this with B-spline basis functions which provide gradients and are exactly integrable. We demonstrate the capability of this uncertainty quantification approach for a simulation of the Hokkaido Nansei–Oki Tsunami with anuga. We develop a better understanding of the tsunami behavior by calculating key quantities such as mean, percentiles and maximum run-up. We compare our approach to the popular Dakota toolbox and reach slightly better results for all quantities of interest.


  • B. M. Adams, M. S. Ebeida, et al. Dakota. Sandia Technical Report, SAND2014-4633, Version 6.11 User’s Manual, July 2014. 2019. https://dakota.sandia.gov/content/manuals.
  • J. H. S. de Baar and S. G. Roberts. Multifidelity sparse-grid-based uncertainty quantification for the Hokkaido Nansei–Oki tsunami. Pure Appl. Geophys. 174 (2017), pp. 3107–3121. doi: 10.1007/s00024-017-1606-y.
  • H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer. 13 (2004), pp. 147–269. doi: 10.1017/S0962492904000182.
  • M. Eldred and J. Burkardt. Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. 47th AIAA. 2009. doi: 10.2514/6.2009-976.
  • K. Höllig and J. Hörner. Approximation and modeling with B-splines. Philadelphia: SIAM, 2013. doi: 10.1137/1.9781611972955.
  • M. Matsuyama and H. Tanaka. An experimental study of the highest run-up height in the 1993 Hokkaido Nansei–Oki earthquake tsunami. National Tsunami Hazard Mitigation Program Review and International Tsunami Symposium (ITS). 2001.
  • O. Nielsen, S. Roberts, D. Gray, A. McPherson, and A. Hitchman. Hydrodymamic modelling of coastal inundation. MODSIM 2005. 2005, pp. 518–523. https://www.mssanz.org.au/modsim05/papers/nielsen.pdf.
  • J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2006. doi: 10.1007/978-0-387-40065-5.
  • D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Dr. rer. nat., Technische Universität München, Aug. 2010. https://www5.in.tum.de/pub/pflueger10spatially.pdf.
  • M. F. Rehme, F. Franzelin, and D. Pflüger. B-splines on sparse grids for surrogates in uncertainty quantification. Reliab. Eng. Sys. Saf. 209 (2021), p. 107430. doi: 10.1016/j.ress.2021.107430.
  • M. F. Rehme and D. Pflüger. Stochastic collocation with hierarchical extended B-splines on Sparse Grids. Approximation Theory XVI, AT 2019. Springer Proc. Math. Stats. Vol. 336. Springer, 2020. doi: 10.1007/978-3-030-57464-2_12.
  • S Roberts, O. Nielsen, D. Gray, J. Sexton, and G. Davies. ANUGA. Geoscience Australia. 2015. doi: 10.13140/RG.2.2.12401.99686.
  • I. J. Schoenberg and A. Whitney. On Pólya frequence functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Am. Math. Soc. 74.2 (1953), pp. 246–259. doi: 10.2307/1990881.
  • W. Sickel and T. Ullrich. Spline interpolation on sparse grids. Appl. Anal. 90.3–4 (2011), pp. 337–383. doi: 10.1080/00036811.2010.495336.
  • C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kânoğlu, and F. I. González. Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA/Pacific Marine Environmental Laboratory. 2007. https://nctr.pmel.noaa.gov/benchmark/.
  • J. Valentin and D. Pflüger. Hierarchical gradient-based optimization with B-splines on sparse grids. Sparse Grids and Applications—Stuttgart 2014. Lecture Notes in Computational Science and Engineering. Vol. 109. Springer, 2016, pp. 315–336. doi: 10.1007/978-3-319-28262-6_13.
  • D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24.2 (2002), pp. 619–644. doi: 10.1137/S1064827501387826.





Proceedings Computational Techniques and Applications Conference