Analysing the stability of graphene wrinkles using variational calculus

Authors

DOI:

https://doi.org/10.21914/anziamj.v63.17079

Keywords:

Graphene Wrinkles, Variational methods, Numerical optimisations

Abstract

The chemical vapour deposition method is widely used to synthesise high quality graphene with a large surface area. However, the cooling process leads to the formations of ripples and wrinkles in the graphene structure. When a self-adhered wrinkle achieves the maximum height, it then folds onto the surface and leads to a collapsed wrinkle. The presence of such deformations often affects the properties of graphene. In this article, we describe a novel mathematical model to understand the formation and geometry of these wrinkles. The stability of these wrinkles is examined based on variational derivations for the energy of each structure. The model provides detailed explanations for the geometry of these wrinkles which would help in tuning their properties.

References

  • J. Aljedani, M. J. Chen, and B. J. Cox. Variational model for collapsed graphene wrinkles. Appl. Phys. A 127.11, 886 (2021), pp. 1–13. doi: 10.1007/s00339-021-05000-y
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 8.3 (2008), pp. 902–907. doi: 10.1021/nl0731872
  • S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R. S. Ruoff, and W. Cai. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotech. 23.36, 365701 (2012). doi: 10.1088/0957-4484/23/36/365701 on p. C85).
  • B. J. Cox, T. Dyer, and N. Thamwattana. A variational model for conformation of graphene wrinkles formed on a shrinking solid metal substrate. Mat. Res. Express 7.8, 085001 (2020). doi: 10.1088/2053-1591/abaa8f
  • A. K. Geim. Graphene: Status and prospects. Science 324.5934 (2009), pp. 1530–1534. doi: 10.1126/science.1158877 on p. C85).
  • K. Kostarelos and K. S. Novoselov. Graphene devices for life. Nature Nanotech. 9 (2014), pp. 744–745. doi: 10.1038/nnano.2014.224
  • F. Long, P. Yasaei, R. Sanoj, W. Yao, P. Král, A. Salehi-Khojin, and R. Shahbazian-Yassar. Characteristic work function variations of graphene line defects. ACS Appl. Mat. Inter. 8.28 (2016), pp. 18360–18366. doi: 10.1021/acsami.6b04853
  • R. Muñoz and C. Gómez-Aleixandre. Review of CVD synthesis of graphene. Chem. Vapor Dep. 19.10–12 (2013), pp. 297–322. doi: 10.1002/cvde.201300051
  • L. Spanu, S. Sorella, and G. Galli. Nature and strength of interlayer binding in graphite. Phys. Rev. Lett. 103.19, 196401 (2009). doi: 10.1103/PhysRevLett.103.196401
  • T. Verhagen, B. Pacakova, M. Bousa, U. Hübner, M. Kalbac, J. Vejpravova, and O. Frank. Superlattice in collapsed graphene wrinkles. Sci. Rep. 9.1, 9972 (2019). doi: 10.1038/s41598-019-46372-9
  • C. Wang, Y. Liu, L. Li, and H. Tan. Anisotropic thermal conductivity of graphene wrinkles. Nanoscale 6.11 (2014), pp. 5703–5707. doi: 10.1039/C4NR00423J
  • W. Wang, S. Yang, and A. Wang. Observation of the unexpected morphology of graphene wrinkle on copper substrate. Sci. Rep. 7.1 (2017), pp. 1–6. doi: 10.1038/s41598-017-08159-8
  • Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5.5 (2011), pp. 3645–3650. doi: 10.1021/nn103523t
  • Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn. Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13.1 (2013), pp. 26–30. doi: 10.1021/nl303168w
  • Z. Xu and M. J. Buehler. Interface structure and mechanics between graphene and metal substrates: A first-principles study. J. Phys.: Cond. Mat. 22.48, 485301 (2010). doi: 10.1088/0953-8984/22/48/485301
  • Y. Zhang, N. Wei, J. Zhao, Y. Gong, and T. Rabczuk. Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles. J. Appl. Phys. 114.6, 063511 (2013). doi: 10.1063/1.4817768
  • W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Tersoff, and P. Avouris. Structure and electronic transport in graphene wrinkles. Nano Lett. 12.7 (2012), pp. 3431–3436. doi: 10.1021/nl300563h

Published

2022-07-04

Issue

Section

Proceedings Engineering Mathematics and Applications Conference