# Connectivity aware simulated annealing kernel methods for coke microstructure generation

## DOI:

https://doi.org/10.21914/anziamj.v63.17187## Keywords:

coke, digital Microstructure, kernel convolution, simulated annealing, microstructure simulation## Abstract

A vital input for steel manufacture is a coal-derived solid fuel called coke. Digital reconstructions and simulations of coke are valuable tools to analyse and test coke properties. We implement biased voxel iteration into a simulated annealing method via a kernel convolution to reduce the number of iterations required to generate a digital coke microstructure. We demonstrate that voxel connectivity assumptions impact the number of iterations and reduce the normalised computation time required to generate a digital microstructure by as much as 70%.

**References**

- L. De Floriani, U. Fugacci, and F. Iuricich.
*Homological shape analysis through discrete morse theory*. Perspectives in Shape Analysis. Ed. by M. Breuss, A. Bruckstein, P. Maragos, and S. Wuhrer. Springer, 2016, pp. 187–209. doi: 10.1007/978-3-319-24726-7_9 - M. A. Diez, R. Alvarez, and C. Barriocanal.
*Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking*. Int. J. Coal Geol. 50.1–4 (2002), pp. 389–412. doi: 10.1016/S0166-5162(02)00123-4 - D. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson.
*Gradient-based microstructure reconstructions from distributions using fast Fourier transforms*. Mat. Sci. Eng. A 494.1–2 (2008), pp. 68–72. doi: 10.1016/j.msea.2007.10.087 - E.-Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao.
*Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method*. Mat. Character. 89 (2014), pp. 33–42. doi: 10.1016/j.matchar.2013.12.011 - Y. Jiao, F. H. Stillinger, and S. Torquato.
*Modeling heterogeneous materials via two-point correlation functions: Basic principles*. Phys. Rev. E 76.3, 031110 (2007). doi: 10.1103/PhysRevE.76.031110 - H. Kumar, C. L. Briant, and W. A. Curtin.
*Using microstructure reconstruction to model mechanical behavior in complex microstructures*. Mech. Mat. 38.8–10 (2006), pp. 818–832. doi: 10.1016/j.mechmat.2005.06.030 - Z. Ma and S. Torquato.
*Generation and structural characterization of Debye random media*. Phys. Rev. E 102.4, 043310 (2020). doi: 10.1103/PhysRevE.102.043310 - F. Meng, S. Gupta, D. French, P. Koshy, C. Sorrell, and Y. Shen.
*Characterization of microstructure and strength of coke particles and their dependence on coal properties*. Powder Tech. 320 (2017), pp. 249–256. doi: 10.1016/j.powtec.2017.07.046 - M. G. Rozman and M. Utz.
*Uniqueness of reconstruction of multiphase morphologies from two-point correlation functions*. Phys. Rev. Lett. 89.13, 135501 (2002). doi: 10.1103/PhysRevLett.89.135501 - T. Tang, Q. Teng, X. He, and D. Luo.
*A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure*. J. Microscopy 234.3 (2009), pp. 262–268. doi: 10.1111/j.1365-2818.2009.03173.x - S. Torquato.
*Microstructure characterization and bulk properties of disordered two-phase media*. J. Stat. Phys. 45.5 (1986), pp. 843–873. doi: 10.1007/BF01020577 - S. Torquato and H. W. Haslach Jr.
*Random heterogeneous materials: microstructure and macroscopic properties*. Appl. Mech. Rev. 55.4 (2002), B62–B63. doi: 10.1115/1.1483342 - S. Torquato and C. L. Y. Yeong.
*Reconstructing random media.II: three-dimensional media from two-dimensional cuts*. Phys. Rev. E 58.1 (1998), pp. 224–233. doi: 10.1103/PhysRevE.58.224 on p. C128). - C. L. Y. Yeong and S. Torquato.
*Reconstructing random media*. Phys. Rev. E 57.1, 495 (1998). doi: 10.1103/PhysRevE.57.495

## Published

2022-07-28

## Issue

## Section

Proceedings Engineering Mathematics and Applications Conference