Connectivity aware simulated annealing kernel methods for coke microstructure generation




coke, digital Microstructure, kernel convolution, simulated annealing, microstructure simulation


A vital input for steel manufacture is a coal-derived solid fuel called coke. Digital reconstructions and simulations of coke are valuable tools to analyse and test coke properties. We implement biased voxel iteration into a simulated annealing method via a kernel convolution to reduce the number of iterations required to generate a digital coke microstructure. We demonstrate that voxel connectivity assumptions impact the number of iterations and reduce the normalised computation time required to generate a digital microstructure by as much as 70%.


  • L. De Floriani, U. Fugacci, and F. Iuricich. Homological shape analysis through discrete morse theory. Perspectives in Shape Analysis. Ed. by M. Breuss, A. Bruckstein, P. Maragos, and S. Wuhrer. Springer, 2016, pp. 187–209. doi: 10.1007/978-3-319-24726-7_9
  • M. A. Diez, R. Alvarez, and C. Barriocanal. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int. J. Coal Geol. 50.1–4 (2002), pp. 389–412. doi: 10.1016/S0166-5162(02)00123-4
  • D. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson. Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Mat. Sci. Eng. A 494.1–2 (2008), pp. 68–72. doi: 10.1016/j.msea.2007.10.087
  • E.-Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mat. Character. 89 (2014), pp. 33–42. doi: 10.1016/j.matchar.2013.12.011
  • Y. Jiao, F. H. Stillinger, and S. Torquato. Modeling heterogeneous materials via two-point correlation functions: Basic principles. Phys. Rev. E 76.3, 031110 (2007). doi: 10.1103/PhysRevE.76.031110
  • H. Kumar, C. L. Briant, and W. A. Curtin. Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech. Mat. 38.8–10 (2006), pp. 818–832. doi: 10.1016/j.mechmat.2005.06.030
  • Z. Ma and S. Torquato. Generation and structural characterization of Debye random media. Phys. Rev. E 102.4, 043310 (2020). doi: 10.1103/PhysRevE.102.043310
  • F. Meng, S. Gupta, D. French, P. Koshy, C. Sorrell, and Y. Shen. Characterization of microstructure and strength of coke particles and their dependence on coal properties. Powder Tech. 320 (2017), pp. 249–256. doi: 10.1016/j.powtec.2017.07.046
  • M. G. Rozman and M. Utz. Uniqueness of reconstruction of multiphase morphologies from two-point correlation functions. Phys. Rev. Lett. 89.13, 135501 (2002). doi: 10.1103/PhysRevLett.89.135501
  • T. Tang, Q. Teng, X. He, and D. Luo. A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure. J. Microscopy 234.3 (2009), pp. 262–268. doi: 10.1111/j.1365-2818.2009.03173.x
  • S. Torquato. Microstructure characterization and bulk properties of disordered two-phase media. J. Stat. Phys. 45.5 (1986), pp. 843–873. doi: 10.1007/BF01020577
  • S. Torquato and H. W. Haslach Jr. Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev. 55.4 (2002), B62–B63. doi: 10.1115/1.1483342
  • S. Torquato and C. L. Y. Yeong. Reconstructing random media.II: three-dimensional media from two-dimensional cuts. Phys. Rev. E 58.1 (1998), pp. 224–233. doi: 10.1103/PhysRevE.58.224 on p. C128).
  • C. L. Y. Yeong and S. Torquato. Reconstructing random media. Phys. Rev. E 57.1, 495 (1998). doi: 10.1103/PhysRevE.57.495





Proceedings Engineering Mathematics and Applications Conference