A generalization of the modified Simpson's rule and error bounds
DOI:
https://doi.org/10.21914/anziamj.v47i0.2Abstract
A generalization of the modified Simpson's rule is derived. Various error bounds for this generalization are established. An application to Dawson integral is given. References- G. A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc., Vol. 123(12), (1995), 3775--3781.
- P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, handbook of analytic-computational methods in applied mathematics, Editor: G. Anastassiou, CRC Press, New York, (2000), 135--200.
- P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, handbook of analytic-computational methods in applied mathematics, Editor: G. Anastassiou, CRC Press, New York, (2000), 65--134.
- Lj. Dedic, M. Matic and J. Pecaric, On Euler trapezoid formulae, Appl. Math. Comput., 123 (2001), 37--62. http://dx.doi.org/10.1016/S0096-3003(00)00054-0
- C. E. M. Pearce, J. Pecaric, N. Ujevic and S. Varosanec, Generalizations of some inequalities of Ostrowski--Gruss type, Math. Inequal. Appl., 3(1), (2000), 25--34. http://www.mia-journal.com/files/3-1/full/03-03.PDF
- N. Ujevic and A. J. Roberts, A corrected quadrature formula and applications, ANZIAM J., 45(E), (2004), E41--E56. http://anziamj.austms.org.au/V45/E051