Blood flow in S-shaped in-plane and out-of-plane coronary arteries

Authors

  • Peter Johnston
  • Barbara Johnston

DOI:

https://doi.org/10.21914/anziamj.v49i0.330

Abstract

The distribution of wall shear stress (WSS) in coronary arteries is an initiating factor for coronary artery disease. The complicated three dimensional structure of coronary arteries makes it difficult to isolate the factors affecting WSS distributions. Here we present a computational fluid dynamics study of transient flow in simplified S-shaped arteries with in-plane and out-of-plane bends. For in-plane arteries there are two regions of consistently low WSS during the cardiac cycle. The WSS distribution is related to secondary velocities which appear as symmetric counter-rotating eddies and are approximately 8% of the axial velocity. For out-of-plane arteries the WSS distributions are similar, but the eddies are no longer symmetric with secondary velocities only 7% of the axial velocities. The symmetric velocity patterns produced by the in-plane model could only exist in a single bend, which limits the usefulness of this model. The results obtained give useful insights into the nature of blood flow in realistically shaped coronary arteries. References
  • Toshihisa Asakura and Takeshi Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res., 66:1054--1066, 1990.
  • C. G. Caro, D. J. Doorley, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. Lond. A, 452:185--197, 1996.
  • Jie Chen and Xi-Yun Lu. Numerical investigation of the non-newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics, 39(5):818--832, 2006. doi:10.1016/j.jbiomech.2005.02.003
  • M. H. Friedman, O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Aterial geometry affects hemodynamics: A potential risk factor for athersclerosis. Atherosclerosis, 46:225--231, 1983. doi:10.1016/0021-9150(83)90113-2
  • H. W. Hoogstraten, J. G. Kootstra, B. Hillen, J. K. B. Krijger, and P. J. W. Wensing. Numerical simulation of blood flow in an artery with two successive bends. Journal of Biomechanics, 29:1075--1083, 1996. doi:10.1016/0021-9290(95)00174-3
  • B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick. Non-{N}ewtonian blood flow in human right coronary arteries: Transient simulations. Journal of Biomechanics, 39(6):1116--1128, 2006. doi:10.1016/j.jbiomech.2005.01.034
  • D. Liepsch. An introduction to biofluid mechanics---basic models and applications. Journal of Biomechanics, 35:415--435, 2002. doi:10.1016/S0021-9290(01)00185-3
  • A. M. Malek, L. A. Seth, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 282(21):2035--2042, 1999.
  • R. M. Nerem, J. A. Rumberger, D. R. Gross, W. W. Muir, and G. L. Gelger. Hot-film coronary artery velocity measurements in horses. Cardiovasc. Res., 10:301--313, 1976.
  • M. Ojha, R. L. Leask, J. Butany, and K. W. Johnston. Distribution of intimal and medial thickening in the human right coronary artery: a study of 17 RCAs. Atherosclerosis, 158:147--153, 2001. doi:10.1016/S0021-9150(00)00759-0
  • T. J. Pedley. The fluid mechanics of large blood vessels. Cambridge University Press, 1980.
  • K. Perktold, R. M. Nerem, and R. O. Peter. A numerical calculation of flow in a curved tube model of the left main coronary artery. J. Biomechanics, 24(3--4):175--189, 1991. doi:10.1016/0021-9290(91)90176-N
  • A. K. Qiao, X. L. Guo, S. G. Wu, Y. J. Zeng, and X. H. Xu. Numerical study of nonlinear pulsatile flow in {S}-shaped curved arteries. Medical Engineering and Physics, 26:545--552, 2004. doi:10.1016/j.medengphy.2004.04.008
  • D. A. Steinman, D. A. Vorp, and C. R. Ethier. Computational modeling of arterial biomechanics: {I}nsights into pathogenesis and treatment of vascular disease. Journal of Vascular Surgery, 37(5):1119--1127, 2003. doi:10.1067/mva.2003.122
  • J. C. Wang, S.-L. T. Normand, L Mauri, and R. E. Kuntz. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation, 110:278--284, 2004. doi:10.1161/01.CIR.0000135468.67850.F4
  • C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res., 53:502--514, 1983.

Published

2008-01-15

Issue

Section

Proceedings Engineering Mathematics and Applications Conference