Comparison of weed spread models

Roslyn Hickson, Steven Barry, Kate Stokes


Numerous models of weed spread and growth exist in ecology. We compare four common models: reaction diffusion, integro-difference, `scatter' model, and an `occupation' model. We discuss their similarities, strengths and limitations. After verifying the equivalence of the integro-difference model, with a Gaussian kernel, against the reaction diffusion model, we show how to equate parameters of the different models. We also investigate the effect of the occupation model parameters on spread behaviour.

  • H. Caswell. Matrix population models: construction, analysis and interpretation. USA: Sinauer Associates, Inc. 2nd edition, 2001.
  • R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7, 353--369, 1937.
  • A. Hastings. Models of spatial spread: is the theory complete? Ecology, 77(6), 1675--1679, 1996.
  • S. I. Higgins, D. M. Richardson. A review of models of alien plant spread. Ecological Modelling, 87, 249--265, 1996. doi:0304-3800(95)00022-4
  • M. Kot, M. A. Lewis, P. van den Driessche. Dispersal data and the spread of invading organisms. Ecology, 77(7), 2027--2042, 1996.
  • M. Kot. Elements of mathematical ecology. UK: Cambridge University Press, 2001.
  • M. A. Lewis, M. G. Neubert, H. Caswell, J. S. Clark, K. Shea. A guide to calculating discrete-time invasion rates from data. Conceptual ecology and invasion biology, 1, 169--192, 2006. mlewis/publications/Cadotte.pdf
  • M. A. Lewis, S. Pacala. Modeling and analysis of stochastic invasion processes. Journal of Mathematical Biology, 41, 387--429, 2000. doi:10.1007/s002850000050
  • R. Lui. A nonlinear integral operator arising from a model in population genetics. I. monotone initial data. SIAM Journal of Mathematical Analysis, 13(6), 913--937, 1982. doi:10.1137/0513064
  • M. G. Neubert, H. Caswell. Demography and dispersal: calculation and sensitivity analysis of invasion spread for structured populations. Ecology, 81(6), 1613--1628, 2000.
  • K. A. Andow, P. M. Kareiva, S. A. Levin and A. Okubo. Spread of invading organisms. Landscape Ecology, 4(2/3), 177--188, 1990. doi:10.1007/BF00132860
  • M. G. Neubert, I. M. Parker. Projecting rates of spread for invasive species. Risk Analysis, 24(4), 817--831, 2004. doi:10.1111/j.0272-4332.2004.00481.x
  • A. Okubo. Diffusion and ecological problems: mathematical models. New York: Springer--Verlag, 1980.
  • M. Rees, Q. Paynter. Biological control of Scotch Broom: modelling the determinants of abundance and the potential impact of introduced insect herbivores. Journal of Applied Ecology, 34, 1203--1221, 1997.
  • J. G. Skellam. Random dispersal in theoretical populations. Biometrika, 8, 196--218, 1951. doi:10.1007/BF02464427
  • H. F. Weinberger. Asymptotic behavior of a model in population genetics. In: J. M. Chadam (ed) Lecture Notes in Mathematics No. 648: Nonlinear partial differential equations and applications, 47--96. Proceedings Indiana 1967--1977 (1978).
  • H. F. Weinberger. Long-time behaviour of a class of biological models. SIAM journal on Mathematical Analysis, 13(3), 323--352, 1982. doi:10.1137/0513028
  • B. Baeumer, M. Kovacs, M. M. Meerschaert. Fractional reaction-diffusion equation for species growth and dispersal. To appear in Journal of Mathematical Biology, 2007. mcubed/JMBseed.pdf
  • S. I. Barry, R. I. Hickson, K. Stokes. Modelling Lippia spread down flooding river systems. To appear in ANZIAM J. (E), 2007.
  • F. van den Bosch, J. A. J. Metz, O. Diekmann. The velocity of spatial population expansion. Journal of Mathematical Biology, 28, 529--565, 1990. doi:10.1007/BF00164162

Full Text:



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.