Modeling and analysis of biodegradation of xenobiotic polymers based on experimental results

Masaji Watanabe, Fusako Kawai

Abstract


An endogenous depolymerization model based on uniform weight distribution is introduced. The time dependent model with temporal dependent degradation rate is reduced to a time independent model. The previously developed techniques were applied to an inverse problem to determine the degradation rate. The transition of weight distribution was simulated by solving an initial value problem. Those techniques are applied to degradation processes of polylactic acid. They are applicable to other polymers subject to endogenous depolymerization processes.

References
  • F. Kawai, Sphingomonads involved in the biodegradation of xenobiotic polymers, Journal of Industrial Microbiology and Biotechnology 23 (1999), 400--407.
  • F. Kawai, M. Shibata, S. Yokoyama, S. Maeda, K. Tada, and S. Hayashi, Biodegradability of Scott--Gelead photodegradable polyethylene and polyethylene wax by microorganisms, Macromolecular Symposia 144 (1999), 73--84.
  • F. Kawai, M. Watanabe, M. Shibata, S. Yokoyama, and Y. Sudate, Experimental analysis and numerical simulation for biodegradability of polyethylene, Polymer Degradation and Stability 76 (2002), 129--135. doi:10.1016/S0141-3910(02)00006-X
  • F. Kawai, M. Watanabe, M. Shibata, S. Yokoyama, Y. Sudate, and S. Hayashi, Comparative Study on Biodegradability of Polyethylene Wax by Bacteria and Fungi, Polymer Degradation and Stability 86 (2004), 105--114. doi:10.1016/j.polymdegradstab.2004.03.015
  • J. D. Lambert, Computational Methods in Ordinary Differential Equations (John Wiley and Sons, Chichester, 1973).
  • G. Madras and B. J. McCoy, Numerical and similarity solutions for reversible population balance equations with size-dependent rates, Journal of Colloid and Interface Science 246 (2002) 356--365. doi:10.1006/jcis.2001.8073
  • S. Matsumura, N. Tomizawa, A. Toki, K. Nishikawa and K. Toshima, Novel Poly(vinyl alcohol)-degrading enzyme and the degradation mechanism, Macromolecules 32 (1999), 7753--7761.
  • B. J. McCoy and G. Madras, Evolution to similarity solutions for fragmentation and aggregation, Journal of Colloid and Interface Science 201 (1998) 200--209. doi:10.1006/jcis.1998.5434
  • B. J. McCoy, Distribution Kinetics for Temperature-Programmed Pyrolysis, Industrial and Engineering Chemistry Research 38 (1999) 4531--4537.
  • B. J. McCoy and G. Madras, Discrete and continuous models for polymerization and depolymerization, Chemical Engineering Science 56 (2001) 2831--2836. doi:10.1016/S0009-2509(00)00516-9
  • J. E. J. Staggs, A continuous model for vaporization of linear polymers by random scission and recombination, Fire Safety Journal 40 (2005) 610--627. doi:10.1016/j.firesaf.2005.05.004
  • M. Watanabe and F. Kawai, Numerical simulation for enzymatic degradation of poly (vinyl alcohol), Polymer Degradation and Stability 81 (2003), 393--399. doi:10.1016/S0141-3910(03)00122-8
  • M. Watanabe and F. Kawai, Analysis of polymeric biodegradability based on experimental results and numerical simulation, Environmental Research and Control (in Japanese) 25 (2003), 25--32.
  • M. Watanabe, F. Kawai, M. Shibata, S. Yokoyama, and Y. Sudate, Computational method for analysis of polyethylene biodegradation, Journal of Computational and Applied Mathematics 161 (2003), 133--144. doi:10.1016/S0377-0427(03)00551-X
  • M. Watanabe, F. Kawai, M. Shibata, S. Yokoyama, Y. Sudate, and S. Hayashi, Analytical and computational techniques for exogenous depolymerization of xenobiotic polymers, Mathematical Biosciences 192 (2004) 19--37. doi:10.1016/j.mbs.2004.06.006
  • M. Watanabe and F. Kawai, Numerical simulation of microbial depolymerization process of exogenous type, R. May and A. J. Roberts (Eds.) Proc. of 12th Computational Techniques and Applications Conference, CTAC-2004, ANZIAM Journal, 46(E), pp. C1188--C1204, 2005. http://anziamj.austms.org.au/V46/CTAC2004/Wata
  • M. Watanabe and F. Kawai, Mathematical modelling and computational analysis of enzymatic degradation of xenobiotic polymers, Applied Mathematical Modelling 30 (2006) 1497--1514.
  • M. Watanabe, F. Kawai, S. Tsuboi, S Nakatsu, and H. Ohara, Study on enzymatic hydrolysis of polylactic acid by endogenous depolymerizaion model, Macromolecular Theory and Simulations 16 (2007) 619--626. doi:10.1002/mats.200700015
  • M. Watanabe and F. Kawai, Mathematical study of the biodegradation of xenobiotic polymers with experimental data introduced into analysis, Proceedings of the 7th Biennial Engineering Mathematics and Applications Conference, EMAC-2005, Melbourne, Editors: Andrew Stacey and Bill Blyth and John Shepherd and A. J. Roberts, ANZIAM J. 47 pp. C665--C681, 2007. http://anziamj.austms.org.au/V47EMAC2005/Watanabe

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v49i0.361



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.