Stability characteristics of conjugate natural convection boundary layers


  • Nicholas John Williamson
  • Steve W Armfield



fluid mechanics, natural convection, stability


Flow in a differentially heated two dimensional rectangular cavity, partitioned in the centre by an infinitely conducting vertical wall, has been examined with numerical simulations over Rayleigh numbers around $10^{10}$ at Prandtl number $7.5$. The configuration is an idealised version of a flow which occurs commonly in engineering settings and is of fundamental importance. Heat is transferred between both sides of the cavity through the conducting wall with natural convection boundary layers forming on all vertical surfaces. We show for the first time that the flow becomes oscillatory above Rayleigh number $1.2\times 10^{10}$ for cavity height to width ratio of two, and above Rayleigh number $1.4\times 10^{10}$ for cavity height to width ratio of one. The results indicate that the instability is a convective boundary layer instability which becomes absolutely unstable as a result of the thermal coupling across the partition wall. References
  • S. Paolucci and D. R. Chenoweth. Transition to chaos in a differentially heated vertical cavity. J. of Fluid Mech., 201:379--410, 1989. doi:10.1017/S0022112089000984
  • R. Anderson and A. Bejan. Heat transfer through single and double vertical walls in natural convection: Theory and experiment. Int. J. Heat Mass Transfer, 24(10):1611--1620, 1981. doi:10.1016/0017-9310(81)90069-7
  • Tatsuo Nishimura, Mitsuhiro Shiraishi, Fumio Nagasawa, and Yuji Kawamura. Natural convection heat transfer in enclosures with multiple vertical partitions. Int. J. Heat Mass Transfer, 31(8):1679--1686, 1988. doi:10.1016/0017-9310(88)90280-3
  • J. W. Elder. Turbulent free convection in a vertical slot. J. of Fluid Mech., 23:99--111, 1965. doi:10.1017/S0022112065001258
  • J. Patterson and J. Imberger. Unsteady natural convection in a rectangular cavity. J. of Fluid Mech., 100:65--86, 1980. doi:10.1017/S0022112080001012
  • G. N. Ivey. Experiments on transient natural convection in a cavity. J. of Fluid Mech., 144:389--401, 1984. doi:10.1017/S0022112084001658
  • J. C. Patterson and S. W. Armfield. Transient features of natural convection in a cavity. J. Fluid Mech., 219:469--497, 1990. doi:10.1017/S0022112090003032
  • P. Le Quere. Transition to unsteady natural convection in a tall water-filled cavity. Phys. Fluids A, 2(4):503--515, 1990. doi:10.1063/1.857750
  • S. W. Armfield and John C. Patterson. Wave properties of natural-convection boundary layers. J. Fluid Mech., 239:195--211, 1992. doi:10.1017/S0022112092004373
  • R. J. A. Janssen and R. A. W. M. Henkes. Influence of Prandtl number on instability mechanisms and transition in a differentially heated square cavity. J. of Fluid Mech., 290:319--344, 1995. doi:10.1017/S0022112095002539
  • S. Armfield and R. Janssen. A direct boundary-layer stability analysis of steady-state cavity convection flow. Int. J. Heat Fluid Flow, 17(6):539--546, 1996. doi:10.1016/S0142-727X(96)00065-3
  • J. C. Patterson, T. Graham, W. Schopf, and S. W. Armfield. Boundary layer development on a semi-infinite suddenly heated vertical plate. J. Fluid Mech., 453:39--55, 2002. doi:10.1017/S0022112001006553
  • R. A. W. M. Henkes. Turbulent natural convection boundary layers. PhD thesis, University of Delft, 1990.
  • B. P. Leonard. A stable and accurate convective modelling procedure based on quadatic upstream interpolation. Comp. Meth. Appl. Eng., 19:59--98, 1979. doi:10.1016/0045-7825(79)90034-3
  • J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer, 2002.
  • S. E. Norris. A Parallel Navier--Stokes Solver for Natural Convection and Free Surface Flow. PhD thesis, University of Sydney, 2000.
  • R. Janssen and S. Armfield. Stability properties of the vertical boundary layers in differentially heated cavities. Int. J. Heat Fluid Flow, 17(6):547--556, 1996. doi:10.1016/S0142-727X(96)00077-X





Proceedings Computational Techniques and Applications Conference