On the numerical solution of the chemical master equation with sums of rank one tensors

Markus Hegland, Jochen Garcke

Abstract


We show that sums of rank one tensors (or separable functions) representing the so-called Candecomp/Parafac or CP-decomposition is used effectively to solve the chemical master equations as in many cases the effective tensor rank of the probability distribution only grows slowly with time. Both theoretical bounds and computational experiments are presented which support this claim. The proposed numerical algorithm is thought to provide an effective tool for the computational study of stochastic biochemical systems involving large numbers of different chemical species.

References
  • {CmePy Documentation}. http://fcostin.github.com/cmepy/, 2010.
  • K. Ball, T. G Kurtz, L. Popovic, and G. Rempala. Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab., 16(4):1925--1961, 2006. doi:10.1214/105051606000000420
  • Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22(4):403--434, 1976. doi:10.1016/0021-9991(76)90041-3
  • Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara, and Hilary Booth. A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205(2):708--724, 2007. doi:10.1016/j.cam.2006.02.053
  • Tobias Jahnke and Wilhelm Huisinga. A dynamical low-rank approach to the chemical master equation. Bull. Math. Biol., 70(8):2283--2302, 2008. doi:10.1007/s11538-008-9346-x
  • Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev., 51(3):455--500, 2009. doi:10.1137/07070111X
  • Brian Munsky and Mustafa Khammash. A multiple time interval finite state projection algorithm for the solution to the chemical master equation. J. Comput. Phys., 226(1):818--835, 2007. doi:10.1016/j.jcp.2007.05.016
  • T. Tian, S. Xu, J. Gao, and K. Burrage. {Simulated maximum likelihood method for estimating kinetic rates in gene expression}. Bioinformatics, 23(1):84--91, 2006. doi:10.1093/bioinformatics/btl552
  • N. G. van Kampen. Stochastic processes in physics and chemistry, volume 888 of Lecture Notes in Mathematics. North-Holland Publishing Co., Amsterdam, 1981.

Keywords


tensor product approximation, chemical master equation

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v52i0.3895




Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.