On the numerical solution of the chemical master equation with sums of rank one tensors


  • Markus Hegland
  • Jochen Garcke




tensor product approximation, chemical master equation


We show that sums of rank one tensors (or separable functions) representing the so-called Candecomp/Parafac or CP-decomposition is used effectively to solve the chemical master equations as in many cases the effective tensor rank of the probability distribution only grows slowly with time. Both theoretical bounds and computational experiments are presented which support this claim. The proposed numerical algorithm is thought to provide an effective tool for the computational study of stochastic biochemical systems involving large numbers of different chemical species. References
  • {CmePy Documentation}. http://fcostin.github.com/cmepy/, 2010.
  • K. Ball, T. G Kurtz, L. Popovic, and G. Rempala. Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab., 16(4):1925--1961, 2006. doi:10.1214/105051606000000420
  • Daniel T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22(4):403--434, 1976. doi:10.1016/0021-9991(76)90041-3
  • Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara, and Hilary Booth. A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205(2):708--724, 2007. doi:10.1016/j.cam.2006.02.053
  • Tobias Jahnke and Wilhelm Huisinga. A dynamical low-rank approach to the chemical master equation. Bull. Math. Biol., 70(8):2283--2302, 2008. doi:10.1007/s11538-008-9346-x
  • Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev., 51(3):455--500, 2009. doi:10.1137/07070111X
  • Brian Munsky and Mustafa Khammash. A multiple time interval finite state projection algorithm for the solution to the chemical master equation. J. Comput. Phys., 226(1):818--835, 2007. doi:10.1016/j.jcp.2007.05.016
  • T. Tian, S. Xu, J. Gao, and K. Burrage. {Simulated maximum likelihood method for estimating kinetic rates in gene expression}. Bioinformatics, 23(1):84--91, 2006. doi:10.1093/bioinformatics/btl552
  • N. G. van Kampen. Stochastic processes in physics and chemistry, volume 888 of Lecture Notes in Mathematics. North-Holland Publishing Co., Amsterdam, 1981.





Proceedings Computational Techniques and Applications Conference