Comparative evaluation of microfluidic circuit model performance for electroviscous flow

Christian John Charles Biscombe, Malcolm Roderick Davidson, Dalton James Eric Harvie

Abstract


Microfluidic circuit models are useful tools for conceptualising and designing lab-on-chip devices. We evaluate the ability of two different microfluidic circuit models to accurately predict electroviscous (pressure driven) flow behaviour in a particular contraction-expansion geometry over an experimentally relevant range of inlet concentrations and surface charge densities. We show that a linear `total current model' based on a relatively simple ion species constraint at circuit nodes performs well compared to a non-linear `ion current model' that conserves species exactly. Specifically, the total current model over-predicts the total pressure and potential differences by less than 2% and 7% respectively for silica channels.

References
  • P. Abgrall and A.-M. Gue. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem---a review. J. Micromech. Microeng., 17:R15--R49, 2007. doi:10.1088/0960-1317/17/5/R01.
  • A. Ajdari. Steady flows in networks of microfluidic channels: building on the analogy with electrical circuits. C. R. Phys., 5:539--546, 2004. doi:10.1016/j.crhy.2004.02.012.
  • S. H. Behrens and D. G. Grier. The charge of glass and silica surfaces. J. Chem. Phys., 115(14):6716--6721, 2001. doi:10.1063/1.1404988.
  • C. L. A. Berli. Theoretical modelling of electrokinetic flow in microchannel networks. Colloids Surf., A, 301:271--280, 2007. doi:10.1016/j.colsurfa.2006.12.066.
  • C. J. C. Biscombe, M. R. Davidson, and D. J. E. Harvie. Microfluidic circuit analysis. II: Implications of ion conservation for microchannels connected in series, submitted to J. Colloid Interface Sci.
  • L. Bousse, C. Cohen, T. Nikiforov, A. Chow, A. R. Kopf-Sill, R. Dubrow, and J. W. Parce. Electrokinetically controlled microfluidic analysis systems. Annu. Rev. Biophys. Biomol. Struct., 29:155--181, 2000. doi:10.1146/annurev.biophys.29.1.155.
  • H.-C. Chang and G. Yossifon. Understanding electrokinetics at the nanoscale: a perspective. Biomicrofluidics, 3(1):012001, 2009. doi:10.1063/1.3056045.
  • D. Erickson. Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid. Nanofluid., 1:301--318, 2005. doi:10.1007/s10404-005-0041-z.
  • D. J. E. Harvie, C. J. C. Biscombe, and M. R. Davidson. Microfluidic circuit analysis. I: Ion current relationships for thin slits and pipes, submitted to J. Colloid Interface Sci.
  • W. M. Haynes, editor. CRC Handbook of Chemistry and Physics (Internet version). CRC Press/Taylor and Francis, Boca Raton, Florida, USA, 91st edition, 2011.
  • R. J. Hunter. Zeta Potential in Colloid Science: Principles and Applications. Academic Press, London, 1981.
  • S. Levine, J. R. Marriott, and K. Robinson. Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc., Faraday Trans. 2, 71:1--11, 1975. doi:10.1039/F29757100001.
  • K. Ohno, K. Tachikawa, and A. Manz. Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis, 29:4443--4453, 2008. doi:10.1002/elps.200800121.
  • R. B. Schoch and P. Renaud. Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett., 86(25):253111, 2005. doi:10.1063/1.1954899.
  • D. Stein, M. Kruithof, and C. Dekker. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett., 93(3):035901, 2004. doi:10.1103/PhysRevLett.93.035901.
  • F. H. J. van der Heyden, D. Stein, and C. Dekker. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett., 95(11):116104, 2005. doi:10.1103/PhysRevLett.95.116104.
  • X. Xuan and D. Li. Analysis of electrokinetic flow in microfluidic networks. J. Micromech. Microeng., 14:290--298, 2004. doi:10.1088/0960-1317/14/2/018.

Keywords


microfluidic; electroviscous; contraction-expansion; modelling; electrokinetic

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v52i0.3945



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.