Solving variational inequalities using wavelet methods


  • Dale Roberts
  • Markus Hegland



variational inequalities, adaptive wavelet


We present a multiscale (or hierarchical) approximation of elliptic variational inequalities where there is no need to develop an explicit mesh refinement strategy. That is, we use wavelets to recast elliptic variational inequalities as constrained quadratic optimisation problems in $\ell_2$ which we solve with the primal dual-path following method and the projected gradient algorithm. References
  • Kendall Atkinson and Weimin Han. Theoretical numerical analysis, volume 39 of Texts in Applied Mathematics. Springer, 2 edition, 2005. doi:10.1007/978-0-387-28769-0.
  • Ward Cheney and Allen A. Goldstein. Proximity maps for convex sets. Proc. Amer. Math. Soc., 10:448--450, 1959.
  • Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp., 70(233):27--75 (electronic), 2001. doi:10.1090/S0025-5718-00-01252-7.
  • Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Adaptive wavelet methods. ii. beyond the elliptic case. Found. Comput. Math., 2(3):203--245, 2002. doi:10.1007/s102080010027.
  • Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal., 41(5):1785--1823 (electronic), 2003. doi:10.1137/S0036142902412269.
  • Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal., 35(2):279--303 (electronic), 2003. doi:10.1137/S0036141002412070.
  • Joachim Dahl and Lieven Vandenberghe. Cvxopt.
  • Stephan Dahlke and Ronald A. DeVore. Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations, 22(1-2):1--16, 1997. doi:10.1080/03605309708821252.
  • Wolfgang Dahmen. Wavelet and multiscale methods for operator equations. Acta numerica, 6:55--228, 1997.
  • Wolfgang Dahmen and Angela Kunoth. Multilevel preconditioning. Numer. Math., 63(3):315--344, 1992. doi:10.1007/BF01385864.
  • Richard S. Falk. Error estimates for the approximation of a class of variational inequalities. Math. Comput., 28:963--971, 1974.
  • Roland Glowinski. Numerical methods for nonlinear variational problems. Scientific Computation. Springer-Verlag, 2008. Reprint of the 1984 original.
  • A. A. Goldstein. Convex programming in hilbert space. Bull. Amer. Math. Soc., 70:709--710, 1964.
  • W. Hackbusch and H.-D. Mittelmann. On multigrid methods for variational inequalities. Numer. Math., 42(1):65--76, 1983. doi:10.1007/BF01400918.
  • Ralf Kornhuber and Rolf Krause. Adaptive multigrid methods for signorini's problem in linear elasticity. Comput. Vis. Sci., 4(1):9--20, 2001. doi:10.1007/s007910100052.
  • Angela Kunoth. Optimized wavelet preconditioning. In Multiscale, nonlinear and adaptive approximation, pages 325--378, 2009.
  • Hans Lewy and Guido Stampacchia. On the regularity of the solution of a variational inequality. Comm. Pure Appl. Math., 22:153--188, 1969.
  • J.-L. Lions and G. Stampacchia. Variational inequalities. Comm. Pure Appl. Math., 20:493--519, 1967.
  • Lindon Roberts. Wavelet methods for variational inequalities, October 2011. Honours Thesis, Australian National University.
  • J. Schoberl. Solving the signorini problem on the basis of domain decomposition techniques. Computing, 60(4):323--344, 1998. doi:10.1007/BF02684379.





Proceedings Computational Techniques and Applications Conference