Modeling Menaquinone 7 production in tray type solid state fermenter

Raja Mahanama, Aydin Berenjian, Hub Regtop, Andrea Talbot, Fariba Dehghani, John Matthew Kavanagh

Abstract


The fermented Japanese food Natto contains menaquinone 7 which is known to reduce the incidence of bone fractures and cardio vascular diseases. Natto is traditionally produced by the solid state fermentation of soy beans by Bacillus subtilis natto. A mathematical model is developed for describing the production of menaquinone 7 in a static solid substrate bed supported on a tray fermenter using parameters obtained from literature for similar micro-organisms. Two model parameters were fitted to experimental data obtained to predict menaquinone 7 production. The postulated model presented in the form of a sensitivity analysis is likely to yield valuable insights on the dynamic behaviour of bacterial kinetics, including the formation of products such as menaquinone 7 as the first step towards scaling up.

References
  • F. Brug and T. Bacchetti F. and Principi and G. Paolo and L. Littarru Tiano. {Olive oil supplemented with menaquinone-7 significantly affects osteocalcin carboxylation}. British Journal of Nutrition 1, 1--5, 2011. doi:doi:10.1017/S0007114511001425
  • K. Rheaume-Bleue. Vitamin $K\protect $\relax _{2}$$ and the Calcium Paradox: How a Little-Known Vitamin Could Save Your Life {Wiley}, 2012.
  • H. Sumi and N. Asano and C. Yatagai {Additional effect of some nutrients and biological-active substances by Bacillus natto treatment of raw wheat.} Journal of the Brewing Society of Japan 100, 449--453, 2005. http://sciencelinks.jp/j-east/display.php?id=000020051405A0583674
  • C. H. Wu and C. C. Chou. {Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures.} Journal of agricultural and food chemistry 57, 10695--10700, 2009. doi:10.1021/jf902752t
  • R. Mahanama and A. Berenjian and P. Valtchev and H. Regtop and R. Biffin and A. Talbot and F. Dehghani and J. Kavanagh. {Enhanced Production of Menaquinone 7 via Solid Substrate Fermentation from Bacillus subtilis.} International Journal of Food Engineering 7( 5), 1--23, 2011. doi::10.2202/1556-3758.2314
  • R. Mahanama and A. Berenjian and H. Regtop and R. Biffin and A. Talbot and F. Dehghani and J. Kavanagh. {Solid-substrate Fermentation of Vitamin K2 with Bacillus Subtilis: Comparison of Continuous Rotation with Stationary bed Fermentation in different Initial Moisture Levels.} Chemeca, Sydney Australia 18--21 September 2011 www.conference.net.au/chemeca2011/papers/106.pdf
  • R. Mahanama and A. Berenjian and F.Dehghani and J. M. Kavanagh. {Effects of Inoculation Loading and Substrate Bed Thickness on the Production of Menaquinone 7 via Solid State Fermentation.} Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2011, WCECS 2011, 19--21 October, 2011, San Francisco, USA, 694--697 www.iaeng.org/publication/.../WCECS2011\protect $\relax _{p}$p694-697.pdf
  • D. A. Mitchell and N. Krieger and M. Berovic. Solid-State fermentation bioreactors, Fundamentals of design and operation. {Elsevier} 2006.
  • G. Viccini and D. A. Mitchell and S. D. Boit and J. Gern and A. S. da Rosa and R. M. Costa and F. D. H. Dalsenter and O. F. von Meien and N. Krieger. {Analysis of growth kinetic profiles in solid-state fermentation.} Food Technology and Biotechnology 39 271--294, 2001. doi:663.143:579.24.57.037
  • G. Saucedo-Castaeda and M. Gutirrez-Rojas and G. Bacquet and M. Raimbault and G. Viniegra-Gonzlez. {Heat transfer simulation in solid substrate fermentation.} Biotechnology and bioengineering 35, 802--808, 1990. doi:10.1002/bit.260350808
  • O. F. Von Meien and D. A. Mitchell. {A two-phase model for water and heat transfer within an intermittently-mixed solid-state fermentation bioreactor with forced aeration.} Biotechnology and bioengineering 79, 416--428, 2002. doi:10.1002/bit.10268
  • J. Sargantanis and M. N. Karim and V. G. Murphy and D. Ryoo and R. P. Tengerdy. {Effect of operating conditions on solid substrate fermentation.} Biotechnology and bioengineering 42, 149--158, 1993. doi:10.1002/bit.10268
  • S. Rajagopalan and J. M. Modak. {Heat and mass transfer simulation studies for solid-state fermentation processes.} Chemical engineering science 49, pp. 2187--2193, 1994. doi:10.1016/0009-2509(94)E0012-F
  • D. A. Mitchell and O. Von Meien. {Mathematical modeling as a tool to investigate the design and operation of the zymotis packed-bed bioreactor for solid-state fermentation.} Biotechnology and bioengineering 68 127--135, 2000. doi:10.1002/(SICI)1097-0290(20000420)68:2<127::AID-BIT1>3.0.CO;2-K
  • D. A. Mitchell and O. F. von Meien and N. Krieger and F. D. H. Dalsenter {A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation.} Biochemical Engineering Journal 17 15--26, 2004. doi:10.1016/S1369-703X(03)00120-7
  • P. Sangsurasak and D. A. Mitchell. {Incorporation of death kinetics into a 2-dimensional dynamic heat transfer model for solid state fermentation.} Journal of Chemical Technology and Biotechnology 64 253--260, 1995. doi:10.1002/jctb.280640307
  • K. Szewczyk and L. Myszka. {The effect of temperature on the growth of A. niger in solid state fermentation.} Bioprocess and Biosystems Engineering 10, 123--126, 1994. doi:10.1007/BF00369467
  • A. Berenjian and R. Mahanama and A. Talbot and R. Biffin and H. Regtop. and P. Valtchev and J. M. Kavanagh and F. Dehghani. {Efficient media for high menaquinone-7 production: Response surface methodology approach.}, New Biotechnology 28 (6), 665--672, doi:10.1016/j.nbt.2011.07.007
  • D. Glenn and P. Rogers. {A solid substrate fermentation process for an animal feed product: Studies on fungal strain improvement.} Australian Journal of Biotechnology 2, 50--54, 1988.
  • J. Thibault and K. Pouliot and E. Agosin and R. Prez-Correa. {Reassessment of the estimation of dissolved oxygen concentration profile and K$L\protect $\relax _{a}$$ in solid-state fermentation.} Process Biochemistry 36, 9--18, 2000. doi:10.1016/S0032-9592(00)00156-4
  • P. M. Doran. Bioprocess engineering principles. vol. 1, {Academic Press} 1995.
  • U. Grigull. team tables in SI-units: concise steam tables in SI-units (student's tables). Properties of ordinary water substance up to $1000\protect $\relax ^{\circ }$$C and 100 megapascal. {Springer} 1990.
  • L. Ikasari and D. A. Mitchell. {Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus.} Biotechnology techniques 12, 171--175, 1998. doi:10.1023/A:1008805004361
  • A. Pandey. {Recent process developments in solid-state fermentation.} Process Biochemistry 27, 109--117, 1992. doi:10.1016/0032-9592(92)80017-W
  • B. K. Lonsane, B. K and G. Saucedo-Castaneda and M. Raimbault and S. Roussos and G. Viniegra-Gonzalez and N. P. Ghildyal and M. Ramakrishna and M. M. Krishnaiah. {Scale-up strategies for solid state fermentation systems.} Process Biochemistry 27(5), 259--273, 1992.. doi:10.1016/0032-9592(92)85011-P
  • B. R. Holland and J. Schmid. {Selecting representative model micro-organisms.} BMC microbiology 5(1) 26--30, 2005. doi:10.1186/1471-2180-5-26

Keywords


Fermentation modelling

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v53i0.5103



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.