Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission

Meksianis Zadrak Ndii, Roslyn I Hickson, Geoffry N Mercer


Infecting Aedes aegypti mosquitoes with the bacteria Wolbachia has been proposed as an innovative new strategy to reduce the transmission of dengue fever. Field trials are currently being undertaken in Queensland, Australia. However, few mathematical models have been developed to consider the persistence of Wolbachia- infected mosquitoes in the wild. This paper develops a mathematical model to determine the persistence of Wolbachia-infected mosquitoes by considering the competition between Wolbachia-infected and non-Wolbachia mosquitoes. The model has four steady states that are biologically feasible: all mosquitoes dying out, only non-Wolbachia mosquitoes surviving, and two steady states where non-Wolbachia and Wolbachia- infected mosquitoes coexist. The stability of the steady states is determined with respect to the key parameters in the mosquito life cycle. A global sensitivity analysis of the model is also conducted. The results show that the persistence of Wolbachia-infected mosquitoes is dominated by the reproductive rate, death rate, maturation rate and maternal transmission. For the parameter values where Wolbachia persists, it dominates the population, and hence the introduction of Wolbachia has great potential to reduce dengue transmission.



Wolbachia, Aedes aegypti, dengue, mathematical model, sensitivity analysis, stability.


Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.