A comparison of finite difference and finite volume methods for solving the space-fractional advection-dispersion equation with variable coefficients

Hala Hejazi, Tim Moroney, Fawang Liu

Abstract


Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space-fractional advection-dispersion equation based on a fractional Fick's law. Zhang et al. [Water Resour. Res. 43:W05439, 2007] considered such an equation with variable coefficients, which they discretised using the finite difference method proposed by Meerschaert and Tadjeran [J. Comput. and Appl. Math. 172:65–77, 2004]. For this method, the presence of variable coefficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard or shifted Grunwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally shifted Grunwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.

References
  • E. E. Adams and L. W. Gelhar. Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resources Research, 28:3293–3307 (1992). doi:10.1029/92WR01757
  • D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert. Application of a fractional advection-dispersion equation. Water Resources Research, 36:1403–1412 (2000). doi:10.1029/2000WR900031
  • D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert. The fractional-order governing equation of Levy motion. Water Resources Research, 36:1413–1423 (2000). doi:10.1029/2000WR900032
  • J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer-Verlag, Berlin, third edition (2002).
  • H. Hejazi, T. Moroney and F. Liu. Stability and convergence of a finite volume method for the space fractional advection-dispersion equation. Journal of Computational and Applied Mathematics, 255:684–697 (2014). doi:10.1016/j.cam.2013.06.039
  • M. M. Meerschaert and C. Tadjeran. Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics, 172:65–77 (2004). doi:10.1016/j.cam.2004.01.033
  • M. M. Meerschaert and C. Tadjeran. Finite difference approximations for two-sided space-fractional partial differential equations. Applied Numerical Mathematics, 56:80–90 (2006). doi:10.1016/j.apnum.2005.02.008
  • K. W. Morton. Numerical solution of convection-diffusion problems. Springer, London, first edition (1996).
  • I. Podlubny. Fractional Differential Equations. Academic Press, New York (1999).
  • C. Tadjeran, M. M. Meerschaert and H. P. Scheffler. A second-order accurate numerical approximation for the fractional diffusion equation. Journal of Computational Physics, 213:205–213 (2006). doi:10.1016/j.jcp.2005.08.008
  • X. Zhang, J. W. Crawford, L. K. Deeks, M. I. Stutter, A. G. Bengough and I. M. Young. A mass balance based numerical method for the fractional advection-dispersion equation: Theory and application. Water Resources Research, 41:W07029 (2005). doi:10.1029/2004WR003818
  • Y. Zhang, D. A. Benson, M. M. Meerschaert and E. M. LaBolle. Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data. Water Resources Research, 43:W05439 (2007). doi:10.1029/2006WR004912
  • Y. Zhang, D. A. Benson and D. M. Reeves. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Advances in Water Resources, 32:561–581 (2009). doi:10.1016/j.advwatres.2009.01.008

Full Text:

PDF BIB


DOI: http://dx.doi.org/10.21914/anziamj.v54i0.6333



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.