Optimal control for a linear quadratic neuro Takagi--Sugeno fuzzy singular system using genetic programming

Kumaresan Nallasamy, Kuru Ratnavelu

Abstract


Optimal control for a linear neuro Takag--Sugeno fuzzy singular system with quadratic performance is obtained using genetic programming (gp). To obtain the optimal control, the solution of a matrix Riccati differential equation is computed by solving a differential algebraic equation using the gp approach. The obtained solution is equivalent or very close to the exact solution of the problem. The accuracy of the solution computed by the gp approach is qualitatively better than the traditional Runge--Kutta method. An illustrative numerical example is presented for the proposed method.


References
  • P. Balasubramaniam, J. Abdul Samath, N. Kumaresan and A. Vincent Antony Kumar, Solution of matrix Riccati differential equation for the linear quadratic singular system using neural networks, Appl. Math. Comput. 182(2):1832–1839, 2006. doi:10.1016/j.amc.2006.06.020
  • G. Da Prato and A. Ichikawa, Quadratic control for linear periodic systems, Appl. Math. Opt. 18:39–66, 1988. doi:10.1007%2FBF01443614
  • D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addision Wesley, 1989. http://dl.acm.org/citation.cfm?id=534133
  • J. Jang, ANFIS: adaptive-network-based fuzzy inference systems, IEEE T. Syst. Man. Cyb. 23(3):665–685, 1993. doi:10.1109/21.256541
  • J. R. Koza, Genetic programming: on the programming of computers by means of natural selection. MIT Press, 1992. http://mitpress.mit.edu/books/genetic-programming
  • M. O'Neill and C. Ryan, Evolutionary automatic programming in an arbitrary language, Genetic Programming, Vol. 4, Kluwer Academic Publishers, 2003. http://www.springer.com/computer/ai/book/978-1-4020-7444-8
  • N. Kumaresan, Optimal control for stochastic linear quadratic singular periodic neuro Takagi–Sugeno fuzzy system with singular cost using ant colony programming, Appl. Math. Model., 35:3797–3808, 2011. doi:10.1016/j.apm.2011.02.017
  • T. Takagi and M. Sugeno, Derivation of fuzzy control rules from human operator's actions, IFAC-IFIP-IFORS Symp., Fuzzy information, knowledge representation and decision analysis, 55–60, 1983. http://dl.acm.org/citation.cfm?id=577582
  • I. G.Tsoulos and I. E. Lagaris, Solving differential equations with genetic programming, Genet. Program. Evolv. M., 7:33–54, 2006. doi:10.1007/s10710-006-7009-y
  • S.-J. Wu, H.-H. Chiang, H.-T. Lin and T.-T. Lee, Neural-nerwork-based optimal fuzzy controller design for nonlinear systems, Fuzzy Set. Syst., 154:182–207, 2005. doi:10.1016/j.fss.2005.03.011

Keywords


Differential algebraic equation, Genetic programming, Matrix Riccati differential equation, Linear neuro Takagi-Sugeno fuzzy singular system, Optimal control and Runge Kutta method.

Full Text:

PDF BIB


DOI: http://dx.doi.org/10.21914/anziamj.v55i0.7806



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.