On second order duality for nondifferentiable minimax fractional programming problems involving type-I functions

S. K. Gupta, D. Dangar, I. Ahamd


We introduce second order \((C,\alpha ,\rho ,d)\) type-I functions and formulate a second order dual model for a nondifferentiable minimax fractional programming problem. The usual duality relations are established under second order \((F,\alpha ,\rho ,d)/(C,\alpha ,\rho ,d)\) type-I assumptions. By citing a nontrivial example, it is shown that a second order \((C,\alpha ,\rho ,d)\) type-I function need not be \((F,\alpha ,\rho ,d)\) type-I. Several known results are obtained as special cases.

  • Ahmad, I., Husain, Z., Optimality conditions and duality in nondifferentiable minimax fractional programming with generalized convexity. J. Optimiz. Theory Appl. 129:255–275, 2006. doi:10.1007/s10957-006-9057-0
  • Ahmad, I., Husain, Z., Sharma, S., Second-order duality in nondifferentiable minmax programming involving type-I functions. J. Comput. Appl. Math. 215:91–102, 2008. doi:10.1016/j.cam.2007.03.022
  • Antczak, T., Generalized fractional minimax programming with \(B\)-\((p, r)\)-invexity. Comput. Math. Appl. 56:1505–1525, 2008. doi:10.1016/j.camwa.2008.02.039
  • Chinchuluun, A., Yuan, D. H., Pardalos, P. M., Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity. Ann. Oper. Res. 154:133–147, 2007. doi:10.1007/s10479-007-0180-6
  • Du, D.-Z., Pardalos, P. M., Minimax and applications, Kluwer Academic Publishers, Dordrecht, 1995. http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.wkap.nl/prod/b/0-7923-3615-1
  • Hachimi, M., Aghezzaf, B., Second order duality in multiobjective programming involving generalized type I functions. Numer. Funct. Anal. Optimiz. 25:725–736, 2005. doi:10.1081/NFA-200045804
  • Husain, Z., Ahmad, I., Sharma, S., Second order duality for minmax fractional programming. Optimiz. Lett. 3:277–286, 2009. doi:10.1007/s11590-008-0107-4
  • Hu, Q., Yang, G., Jian, J., On second order duality for minimax fractional programming. Nonlinear Anal. 12:3509–3514, 2011. doi:10.1016/j.nonrwa.2011.06.011
  • Lai, H. C., Lee, J. C., On duality theorems for a nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 146:115–126, 2002. doi:10.1016/S0377-0427(02)00422-3
  • Lai, H. C., Liu, J. C., Tanaka, K., Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl. 230:311–328, 1999. doi:10.1006/jmaa.1998.6204
  • Liu, J. C., Wu, C. S., On minimax fractional optimality conditions with invexity. J. Math. Anal. Appl. 219:21–35, 1998. doi:10.1006/jmaa.1997.5786
  • Long, X. J., Optimality conditions and duality for nondifferentiable multiobjective fractional programming problems with \((C,\alpha ,\rho ,d)\)-convexity. J. Optimiz. Theory Appl. 148:197–208, 2011. doi:10.1007/s10957-010-9740-z
  • Schmitendorf, W. E., Necessary conditions and sufficient conditions for static minmax problems. J. Math. Anal. Appl. 57:683–693, 1977. doi:10.1016/0022-247X(77)90255-4
  • Sharma, S., Gulati, T. R., Second order duality in minmax fractional programming with generalized univexity. J. Glob. Optimiz. 52:161–169, 2012. doi:10.1007/s10898-011-9694-1
  • Yuan, D. H., Liu, X. L., Chinchuluun, A., Pardalos, P. M., Nondifferentiable minimax fractional programming problems with \((C,\alpha , \rho , d)\)-convexity. J. Optimiz. Theory Appl. 129:185–199, 2006. doi:10.1007/s10957-006-9052-5


Minimax fractional programming; Nondifferentiable programming; Second-order duality; (F,\alpha,\rho,d)-type-I functions

Full Text:


DOI: http://dx.doi.org/10.21914/anziamj.v55i0.7809

Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.